DUSEL S4 Working Groups

Baseline characterization and monitoring	Stephen Martel, U. of Hawaii, <u>smartel@hawaii.</u> <u>edu</u>	Characterization of the current state of subsurface conditions, monitoring of processes prior to ISEs. <i>Conditions and processes related to deformation, fluid flow, mass transport, chemical reactions, microbial distribution and reactions</i>
Ambient rock deformation processes	Herb Wang U. Wisconsin <u>wang@geology.w</u> <u>isc.edu</u>	Deformation processes occurring naturally or as a result of ambient conditions resulting from ongoing operations at the facility including excavation and dewatering. <i>e.g. Poroelastic processes, stress dependent</i> <i>permeability, natural seismicity, scaling of stress and deformation,</i> <i>biogeochemical reactions, microbial interactions, and related.</i>
Induced rock deformation processes	Leonid Germanovich Ga Tech <u>leonid@ce.</u> gatech edu	Deformation processes induced by manipulating in situ conditions. <i>e.g. Fluid-driven and mixed mode propagation, fracture interaction, faulting, fracture energy scaling, thermal effects, healing, sealing and triggering, biogeochemical reactions, and microbial interactions, and related.</i>
Ambient flow, transport, diversity and activity	David Boutt U. Mass <u>dboutt@geo.</u> <u>umass.edu</u>	Flow, transport and reaction processes occurring naturally or as a result of ambient conditions at the facility. <i>e.g. Natural flow systems, permeability scaling, fracture connectivity and architecture, aqueous geochemistry, natural tracers, flow paths and rates, water ages, microbial activity and diversity, microbial interactions with subsurface facility, and related.</i>
Induced flow, transport and activity	Eric Sonnenthal LBNL elsonnenthal@ lbl.gov	Flow and transport processes induced by manipulating in situ conditions. e.g. Heat, mass and microbial transport, hydrothermal reactions, thermal stresses and permeability changes, multiphase, pressure solution, microbially mediated reactions, and related.
Underground construction and mining	Charles Fairhurst U. Minn <u>fairh001@umn.</u> <u>edu</u>	Processes related to creating, designing, characterizing or monitoring and maintaining underground construction and mining activities. <i>e.g. Large cavities, tunnels, wellbores, rupture, uncertainty, preconditioning, ventilation, corrosion, and related.</i>
CO2 Sequestration	Joe Wang LBNL JSWang@lbl. gov	Processes associated with designing and predicting the performance of long-term disposal or sequestration of wastes in rock. <i>e.g.</i> CO_2 transport, multi-phase transport, reactions and mineralization, microbial induced precipitation and immobilization of metals, and related.
Resource extraction	Jean-Claude Roegiers U. Oklahoma <u>jroegiers@ou.</u> <u>edu</u>	Processes related to designing and improving the recovery and management of valuable earth resources; petroleum, gas, geothermal energy, ore minerals, water, biofuels, etc. <i>e.g. Fracturing, drilling, secondary and</i> <i>tertiary recovery, well completion, formation characterization, microbially</i> <i>enhanced recovery, and related.</i>
Subsurface Imaging and sensing	Steve Glaser UC Berkeley <u>glaser@ce.</u> <u>berkeley.edu</u>	Techniques for improving the spatial and temporal resolution of important subsurface properties or states. <i>e.g. Seismic, electrical, radar tomography,</i> <i>and emerging geophysical techniques; raman, UV fluorescent and</i> <i>emerging sensors, mobile laboratories, or related techniques.</i>
Ultra-deep drilling and exploration	Tom Kieft New Mexico Tech <u>tkieft@nmt.edu</u>	Biological and geological processes occurring at depths from 2.5 to 5 km. <i>Microbial population, fluid composition, flow rates, fluid age, stress state, permeability and related.</i>

Self-Initiated		
Working		
Groups		
PODS	Derric Iles, University of South Dakota <u>diles@usd.edu</u>	Geologic processes through Earth history. e.g. Petrogenesis, Ore Deposits, Structure, Sedimentation, tectonics and deformation, crustal fluids,
Geoneutrino	P. Ila, MIT	
Radiometric	pila@MIT.EDU	
Analysis Group for Geosciences		