Homestake DUSEL Facility Infrastructure

Richard DiGennaro

Project Manager and Systems Engineer

Lawrence Berkeley National Laboratory

Presentation Topics:

- General Concepts for infrastructure planning at Homestake for the Initial Suite of Experiments
- Some examples of proposed development for Homestake DUSEL
- Overview of existing facility infrastructure
- Overview of roles and responsibilities for DUSEL Preconstruction Planning
- Systems Engineering Plans Requirements Database

Homestake DUSEL Campus Development

Four primary campus locations for research:

- 1. Surface campus at Yates Complex
- 2. Near-surface campus at 300 Level
- 3. Mid-level campus at 4850 Level
- 4. Deep-level campus at 7400 Level

Infrastructure will be maintained for access to additional, selected levels for bio- and geosciences and for unique experiments that require specific or isolated sites.

Homestake Long Section

Homestake and Lead Aerial Photo

Water Treatment Plant

Open Cut

Yates Shops

Yates Complex

Lead

Ross Complex

Surface Campus Development Plan

Homestake DUSEL

Partial List - SDSTA Building Inventory

SDSTA Building Inventory							12/1/2004
			В	uilding Fo	otprint	Number of	Total Eloor
Description	Group	Type of Renovation	Length (ft.)	Width (ft.)	Area (sq. ft.)	Usable/Accessible Floors	Area (sq. ft.)
Yates Sawmill	Yates	Alterations and Upgrades for DUSEL	68	44	2,992	1	2,992
Yates Safety and Dry	Yates	Alterations and Upgrades for DUSEL	Irregular		5,883	3	17,649
Yates Ramp and Lamp Room	Yates	Alterations and Upgrades for DUSEL	24	22	528	1	528
Yates Hoist and MG Set Rooms	Yates	Alterations and Upgrades for DUSEL	Irregular		16,130	1	16,130
Yates Headframe Bldg.	Yates	Alterations and Upgrades for DUSEL	Irregular		16,679	1	16,679
Yates Bosses Office	Yates	Alterations and Upgrades for DUSEL	26	22	572	1	572
Administration Office	Yates	Alterations and Upgrades for DUSEL	88	93	8,184	2	16,368
Shovel and Battery Repair Shop	Shops	Alterations and Upgrades for DUSEL	48	23	1,104	1	1,104
Paint Shop	Shops	Alterations and Upgrades for DUSEL	34	21	714	1	714
Main Warehouse and Plumbers Shed	Shops	Alterations and Upgrades for DUSEL	Irregular		6,393	4	25,572
Machine and Metal Fab Shop	Shops	Alterations and Upgrades for DUSEL	Irregular		25,036	1	25,036
Iron House	Shops	Alterations and Upgrades for DUSEL	98	55	5,390	1	5,390
Foundry	Shops	Alterations and Upgrades for DUSEL	Irregular		13,710	1	13,710
Bit Shop and Shop Yard	Shops	Alterations and Upgrades for DUSEL	30	15	450	1	450
		Alterations and Upgrades for DUSE	L Total				142,894

Surface Facilities and Near-surface campus at 300 Level

Over 100,000 ft² of existing space at the Yates Complex may be used for User Activities and Facility Management Existing space at the Ross Complex may be used for construction, maintenance, and site services.

The Near-surface Campus at 300L can provide drive-in access to material and fabrication shops, rooms for Education and Outreach, and R&D laboratories.

Campus Development Concepts at 4850 Level

Homestake DUSEL

Lab Module Concept for Analysis and Feasibility Studies

Purpose-built laboratories modules and infrastructure will be developed to match specific experimental requirements.

Preliminary Feasibility Studies for Excavation and Ground Support for Typical Lab Modules

4850 Level Map 4850 Level Map Detailed site investigation studies will evaluate specific

conditions at proposed locations for development.

FORMATION	LEVEL	LOCATION	BOLTING	SHOTCRETE	
	48501	Roof	5 m long bolts @ 2 m c/c	90 mm fibre reinforced shotcrete	
Poorman Formation	TOJUL	Side Walls	8 m long bolts @ 1.75 m c/c	100 mm unreinforced shotcrete	
	74001 /80001	Roof	5 m long bolts @ 1.75 m c/c	100 mm fibre reinforced shotcrete	
	74001/80001	Side Walls	8 m long bolts @ 1.5 m c/c	90 mm fibre reinforced shotcrete	
	48501	Roof	5 m long spot bolts	none	
Yates Unit	HOUL	Side Walls	4 m long bolts @ 2.5 m c/c	none	
		Roof	5 m long bolts @ 2.5 m c/c	none	
	7400L/8000L	Side Walls	4 m long bolts @ 2.25 m c/c	50 mm unreinforced shotcrete	

Preliminary Geotechnical Analyses were done to support the site selection and identify preliminary requirements for excavation and ground support requirements.

Water Shield Facility Concept for Multiple Experiments

Two Water Tanks: 14m dia. x 10m high Four Experiments in each tank: 2m dia. x 2m high

Electrical Racks

Offices and Shops

Homestake DUSEL

Feasibility Studies to consider using the existing Davis Lab for early experiments:

Current Davis Cavity Dimensions: 55ft x 30ft x 32ft high

4850L Access

4874L Secondary Access

Davis Lab with proposed LUX and Mini-CLEAN Experiments

Davis Lab alternate configuration with LUX experiment and Low Background Facility

Homestake DUSEL

Concept studies for large cavity construction

Concept studies and preliminary geotechnical analyses have demonstrated that large cavities of ~50 m diameter and 100 m height are feasible at 4850 Level and deeper.

Deep Campus at 7400 Level and access to additional ramps and drifts down to 8000 Level

Proposed Surface and Underground Development Program

Homestake Interim Lab and DUSEL Summary of Development of Space and Availability (Underground space fully outfitted and ready for detector installation)	Labs, Shops, Offices Usable Floor Area		Excavation Volume (including access drifts)		
	sq. ft.	sq. m.	cu. yd.	cu. m.	
4850 Level Subtotal	107,351	9,973	111,115	84,903	
Ross Shops for Construction Staging	12,469	1,158	5,738	4,385	
Davis Lab, Sanford Lab, and Bio-Geo Lab	15,738	1,462	13,543	10,348	
Lab Module #1 and Common Facilities	26,464	2,459	25,155	19,221	
Lab Module #2	17,560	1,631	21,433	16,377	
Lab Module #3	17,560	1,631	23,121	17,667	
Lab Module #4 (excavation only, without lab outfitting)	17,560	1,631	22,125	16,906	
7400 Level Subtotal	63,588	5,907	98,477	75,246	
Lab Module #1 and Common Facilities	28,468	2,645	29,594	22,613	
Lab Modules #2 and #3 (excavation only, without lab outfitting)	35,120	3,263	68,883	52,633	
300 Level Subtotal	8,668	805	14,007	10,703	
Lab #1, Shops, and E&O Rooms	8,668	805	14,007	10,703	
Surface Subtotal	98,000	9,104			
DUSEL Offices and User Support Areas, Phase 1	10,000	929			
Sanford Clean Room and Assembly Shop	6,000	557			
DUSEL Offices and User Support Areas, Phase 2	32,000	2,973			
Sanford Center for Science Education	50,000	4,645			
Total	277,607	25,790	223,599	170,852	

Existing Cage Dimensions and Capacities

Yates Cage Hoist

Maximum cage dimensions:

Maximum cage payload:

Ross Cage Hoist Maximum cage dimensions:

Maximum cage payload:

#6 Winze Cage Hoist

Maximum cage dimensions:

Maximum cage payload:

1.4 x 3.7 x 2.2m high (side-by-side) (4' 8" x 12' 1.5" x 7' 2" high) 5,450 kg (12,000 lb), nominal 5,900 kg (13,000 lb), at 1/2-speed.

1.3 x 3.8 x 2.2m high (4' 4-5/8" x 12' 5" x 7' 2" high) 5,450 kg (12,000 lb, nominal 6,100 kg (13,400 lb), at 1/2-speed.

1.3 x 3.7 x 2.2m high (double deck) (4' 4" x 12' 1-1/2" x 2.2m high) 5,450 kg (12,000 lb), nominal 6,400 kg (14,000 lb), at 1/2-speed.

Yates Shaft Upgrade Plan

Improved access to the 4850 Level for personnel, equipment, and utilities

Homestake DUSEL

General Plan for Primary Ventilation

Proposed R&D for Infrastructure Development

- Hazardous Materials Transport, Storage, Operations
 (e.g., Large volumes of cryogens)
- Clean Transport Containers and Handling Systems (similar to SNOLab configurations)
 (Standard sizes, capacities, "Double-bagged", clean room transitions, rigging and lifting fixtures, etc.)
- Large-scale Reduced-radon Air Supply
- Large-scale Underground Clean Rooms and Clean Transitions
- Large-scale Purified Water Systems
- Site Investigations and Detailed Geotechnical Analyses
- U/G Communications, monitoring, IT, cyberinfrastructure

Proposed Timeline for	Start Finisk		Start Finish	Start F	Finish					Fis	cal Ye	ars				
Sanford Laboratory and DUSEL	Jan	1 111311	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017			
Sanford Laboratory at Homestake																
Ross Shaft Rehab and Pumping Column Commissioning	Jan-07	Feb-08														
Yates Shaft Rehab.	Sep-07	Aug-08														
Gain safe access to 4850L for EIP construction start, and hold water level at 50	OOL	Feb-08		•												
Install facility infrastructure for Davis Lab early experiments	Feb-08	Sep-08														
Install and commission research instrumentation in Davis Lab	Jul-08	Feb-09														
Early experiments in Davis Lab ready for operation		Feb-09			•											
Continued rehabilitation and infrastructure upgrades for Sanford Lab		Dec-10														
Transition from Sanford Lab to DUSEL Operations		Jan-11					•									
NSF Deep Underground Science and Engineering Laboratory at Ho	omestake															
Homestake site selection announcement		Jul-07	•													
DUSEL Preconstruction Planning and Development (R&RA)	Oct-07	Sep-12														
Preliminary Design Phase to develop Baseline Cost and Schedule	Oct-07	Dec-08														
Preliminary Design Review and National Science Board Recommendation		Mar-09			♦											
Final Design Phase	Mar-09	Dec-10														
Final Design Review and Authorization for Construction Start		Dec-10					◆									
DUSEL Facility - Proposed Construction and Commissioning (MREFC)	Jan-11	Dec-16														
Proposed Construction Start		Jan-11					•									
Near-Surface Campus Construction at 300L																
300L Labs and Education and Outreach Facilities	Jan-11	Jun-12						•								
Mid-Level Campus Construction at 4850 Level																
4850L Common Facilities and Lab Module #1 (Excavation & Lab Build-out)	Jan-11	Oct-12						♦	•							
4850L Lab Modules #2, #3 and #4	Jul-11	Jul-15							•	•	•					
Deep-Level Campus Construction at 7400 Level																
7400L Common Facilities and Lab Module #1 (Excavation & Lab Build-out)	Jan-13	Dec-14														
7400L Lab Modules #2 and #3	Jan-14	Dec-15									♦	◆				
Surface Campus Construction																
Phase 1 Offices and Laboratories	Jul-11	Jul-12						•								
Phase 2 Offices and Laboratories	Jul-13	Jul-14								•						

Institutional Responsibilities and Sub-project Teams

Institution	Sub-project Teams				
U.C. Berkeley, Lawrence Berkeley National Laboratory, South Dakota	Science and Engineering Research Program Development				
School of Mines and Technology and	Environment, Health and Safety Oversight				
Homestake Scientifc Collaboration	Education and Outreach Program Development				
	Project Management and Project Controls				
Lawrence Berkeley National Laboratory	Systems Engineering (requirements, risk and value management; interfaces and systems integration; validation)				
	Underground Labs: Detailed engineering design and coordination with research program requirements				
	Research Equipment and Experimental Instrumentation: engineering and design support				
	Environment, Health and Safety Management				
	Facility Management, Site Services and Site Operations				
South Dakota Science and Tachnology Authority and South	Mining-to-Labs Conversion: Re-entry and infrastructure rehabilitation				
Dakota School of Mines and	Underground Labs: Construction management,				
Technology	commissioning, and installation of research				
Ç7⊄	instrumentation				
	New excavation, underground facility infrastructure and				
	services construction management, inspection, quality				
	assurance, and commissioning				

Homestake DUSEL

HOMESTAKE – Deep Underground Science and Engineering Laboratory Requirements Information Checklist

UNDERGROUND LABS and SPACE

Experiment or Program Name: ______ Principal Investigator or Contact Person: ______ Brief Summary: _____

other:

Note: General requirements and lab module infrastructure for physics and earth sciences experiments have been compiled for DUSEL planning (ref. <u>http://www.dusel.org/InfrastrMatrices_rev.xls</u>). As-needed, use this checklist to add, update, or modify information for the proposed experiment.

1. Modules or Functional Uses:	Compressed Air	Clean Room Storage
	Cylinder Gases:	
	Inert	7. Special Facilities:
	Flammable	
	Toxic	Material Access
2. General Information:	Carbon Dioxide	Access Schedule
	Nitrogen Gas	Cleanliness
Probable Start (year)	Liquid Nitrogen	Security
Duration	other:	Data Communication:
Space (Volume) L x W x H (m ³)		
	4. Electrical	
Depth/Shielding (mwe)		8. Laboratory, Machine Tools, and
Occupancy (Peak/Avg)	Approx. total power (kW)	Other Equipment:
	(Peak/Avg.)	
3. Mechanical	Other electrical needs (describe):	
Temperature		
Uncontrolled	5. Chemicals:	
20 +/- 5 deg. C (Air Cond.)		

Bases

DUSEL

HOMESTAKE – Deep Underground Science and Engineering Laboratory Requirements Information Checklist

SURFACE LABS and SPACE

Experiment or Program Name:		
Principal Investigator or Conta	ct Person:	
Brief Summary.		
Brier Summary		
1. Rooms or Functional Uses:	Cylinder Gases:	
		7. Special Facilities:
		Material Access
		Access Schedule
2. General Information:	4. Electrical	Cleanliness
		Security
Probable Start (year)	Approx. total power (kW)	Crane Access:
Duration	(Peak/Avg.)	Data Communication:
Space (Approx. Floor Area or	Other electrical needs (describe):	
Volume)		
		8. Laboratory, Machine Tools, and
Occupancy (Peak/Avg)		Other Equipment:
	5. Chemicals:	
3. Mechanical		
	Bases	
Temperature	Acids	
Uncontrolled	Solvents	
20 +/- 5 deg. C (Air Cond.)	Radioisotopes	
other:	Chemical inventory storage	
Humidity	Chemical waste storage	
50% +/- 20%	Biological storage	
Uncontrolled	Radioisotope storage	
other:	Cryogenics	
Air Filtration/Recirculation	Hazardous/Special Handling:	

Air Filtration/Recirculation (describe):

9. Other Needs or Requests:

Systems Engineering - Requirements Management Database

Requirement Number ID: A unique serial number identifier for each record.

Work Breakdown Structure: WBS # reference for project controls and review.

Organization: Institution, user group, or experiment representing the origin for the defined need or constraint.

Owner: Named individual who is responsible throughout the project design and execution process to verify that the requirement is achieved or to identify and report deviations.

System: Top-level grouping for an experiment, common facility, institutional program, or regulatory agency.

Sub-system: Mid-level grouping by elements within each system.

Topic: Lowest-level grouping by engineering discipline or project management categories.

Requirement Statement: Concise, summary definition of functional objectives (what the system must do) or performance objectives (how well it must be done).

Rationale: Optional supplementary information to further explain the requirement statement.

Type: Basis for the requirement, such as functional, performance, budgetary, regulatory, interface, etc.

Source(s): Examples: Funding or regulatory agencies (e.g., NSF, DOE, MSHA, OSHA, DENR, laws & statutes), Institutional (SDSTA, Homestake Lab, LBNL, Site-specific design criteria), Programmatic (Education & To-be-determined (TBD), Draft, Defined, Approved, Verified, Deleted, or Obsolete Outreach, Maintenance & Operations, Environment, Health, Safety & Security, Policies and Procedures), Users Experimental and Research (Functional, Performance, Analysis, Existing Conditions), Subcontracts and Industry Standards, Lessons Learned.

URL Link(s): Optional, additional reference information or detailed requirements documentation.

Comments & Revision Note: Optional descriptive narrative.

Supplementary Slides

Systems Engineering Toolkit

<u>Objective:</u> Implement a unified approach to Systems Engineering and Project Management

- Communication
- Requirements Management Database
- Continuous Risk Management
- Work Breakdown Structure, Subsystem Interface Management
- Integrated Safety Management
- Design-Reviews, Integration, and Performance Management
- Value Management
- Configuration Management and Change Control
- Project Controls: Earned Value Management System

PROCESS: Homestake DUSEL

Environment, Health & Safety and Project Execution Plan

1. Environment, Health and Safety and Integrated Safety Management

- 1.1 Integrated Safety Management Plan
- 1.2 Environmental Laws, Regulations, and Best Practice
 - 1.2.1 Regulatory Agencies and Jurisdiction
 - 1.2.2 Permitting, Codes, Standards and Regulatory Compliance
 - 1.2.3 Environmental Assessment and Environmental Impact Statement
 - 1.2.4 Environmental Monitoring Program
- 1.3 Hazardous Material Management
- 1.4 Regional communication and public information
- 1.5 Emergency Management, Response and Communication
 - 1.5.1 Fire Prevention, Containment, and Monitoring
 - 1.5.2 Safeguards and Security
 - 1.5.3 Regional resources and cooperative agreements

(continued)

PROCESS: Homestake DUSEL

Environment, Health & Safety and Project Execution Plan

1. Environment, Health and Safety and Integrated Safety Management (cont.)

- 1.6 Safety Training Programs and Oversight
 - 1.6.1 Staff/Employees
 - 1.6.2 Experimenters, Students, Visitors, and Guests
 - 1.6.3 Contractors, consultants, services
- 1.7 Safety Review Process, Inspection, Surveillance and Oversight
 - 1.7.1 Construction
 - 1.7.2 Experiments
 - 1.7.3 Maintenance and Operations
- 1.8 Recycling and Waste Disposal Plans
- 1.9 Energy Conservation Performance and Energy Management
- 1.10 Facility Life Cycle Plan, De-integration and Disposal (D&D)1.10.1 Laboratory Closure Plan

PROCESS: Homestake DUSEL Project Execution Plan

2. Project Execution Plan

- 2.1 Research Objectives Summary
- 2.2 Preliminary Baseline Performance Key Parameters
- 2.3 Project Governance and Management Organizational Plan2.3.1 Sub-awards and Organizational Responsibilities

2.4 Work Breakdown Structure (WBS)

- 2.4.1 WBS for MREFC Construction Project
- 2.4.2 WBS for Operations
- 2.4.3 WBS Dictionary
- 2.5 Project Resource-Loaded Schedule
 - 2.5.1 Preconstruction Planning and Development
 - 2.5.2 MREFC Construction
 - (Continued)

PROCESS: Homestake DUSEL Project Execution Plan

2. Project Execution Plan (continued)

2.6 Project R&D Plan

- 2.6.1 Preliminary Site Investigation: Coring and Geotechnical Analyses
- 2.6.2 Excavation methods and technologies
- 2.6.3 Feasibility studies for Large-span Cavities
- 2.6.4 Site-specific Safety Standards and Guidelines
- 2.6.5 Underground systems and controls for hazardous materials
- 2.6.6 Underground Communications, Cyberinfrastructure, IT, and monitoring systems
- 2.6.7 Large-scale Reduced-radon Air Supply
- 2.6.8 Large-scale underground clean rooms
- 2.6.9 Large-scale purified water systems
- 2.7 Internal and Institutional Project Oversight and Design Review Plan
- 2.8 Acquisition Plan and Project Delivery Methods

(Continued)

PROCESS: Homestake DUSEL Project Execution Plan

2. Project Execution Plan (continued)

- 2.9 Systems Engineering Plan
 - 2.9.1 Requirements Management
 - 2.9.2 Continuous Risk Management
 - 2.9.3 Configuration Management
 - 2.9.4 Quality Assurance and Quality Control
 - 2.9.5 Value Management
 - 2.9.6 Interface Control
 - 2.9.7 Systems Integration, Testing, and Validation
 - 2.9.8 Information, Communication and Document Management

2.10 Project Management Control System

- 2.10.1 Baseline Cost and Schedule Performance Parameters
- 2.10.2 Resource-loaded Project Schedule
- 2.10.3 Preliminary Risk Analysis and Risk Mitigation
- 2.10.4 Preliminary Cost Estimate and Contingency Analysis
- 2.10.5 Partnerships and Partnership Funding
- 2.10.6 Project Controls and Earned Value Management
- 2.10.7 Technical and Financial Oversight, Reporting, and Reviews
- 2.10.8 Change Control and Contingency Management
- 2.10.9 Project Staffing and Hiring Plan

3. Summary: Technical Feasibility and Constructability

4. Transition to Operations

- 4.1 Operational Readiness Criteria
- 4.2 Commissioning
- 4.3 Conduct of Operations Plan
- 4.4 Operations Management Plan
- 4.5 Maintenance and Operations Plan

NSF Funding Profile: Pre-Construction Planning and DUSEL Project (incl. 3% annual escalation, with contingency, then-year-\$)

Sub-Projects Cost Profile (excluding Experimental Research Equipment) (incl. 3% annual escalation, with Contingency)

Existing Drifts and Access for Campus Development at 4850 Level

