Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE

Materials Discovery, Design and Synthesis

Core Research Areas: Materials Chemistry, Biomolecular Materials, and Synthesis and Processing Science
Scientific Team Lead: TBD

This program area supports fundamental research on design, synthesis and discovery of novel materials and material constructs, and development of innovative synthesis and processing methods. Major research thrusts include:

  • Nanoscale chemical synthesis and organization of nano-materials into macroscopic structures
  • Solid state chemistry – exploratory synthesis and discovery of new classes of energy-related materials such as superconductors, magnets, thermoelectrics and ferroelectrics
  • Polymers and polymer composites
  • Surface and interfacial chemistry – electrochemistry, electro-catalysis, molecular level understanding of friction, adhesion and lubrication
  • Basic research in synthesis and processing science – for developing innovative synthesis techniques, to understand the physical phenomena that underpin materials synthesis such as diffusion, nucleation and phase transitions, and to develop in situ monitoring and diagnostic capabilities
  • Fundamental research in biomimetic/bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology


Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures

Program Leader: Miquel Salmeron
Co-PI's: Gabor A. Somorjai, Peidong Yang

This program focuses on molecular level studies of surfaces and interfaces to determine the mechanisms that govern their physical, chemical, and tribological properties. Single crystals and nanocrystals are the key materials investigated.  We develop techniques and methods that make possible surface sensitive microscopy and spectroscopy studies of surfaces under ambient conditions.


C. Chen et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 343, 1339-1334 (2014).

X. Feng, S. Maier, M. Salmeron. Water Splits Epitaxial Graphene and Intercalates. J. Am. Che. Soc.134, 5662–5668 (2012).

J.S. Choi, J.S. Kim, I.S. Byun, D.H. Lee, M.J. Lee, B.H. Park, C. Lee, D. Yoon, H. Cheong, K.H. Lee, Y.W. Son, J.Y. Park, and M. Salmeron. Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene. Science 333, 607-610 (2011).


Inorganic-Organic Nanocomposites

Program Leader: Ting Xu
Co-PI's: A. Paul Alivisatos, Yi Liu, Miquel Salmeron, Lin-Wan Wang, Peidong Yang

The organic/inorganic nanocomposite program aims to design and synthesize organic and inorganic building blocks, and guide their assemblies into functional nanocomposite materials by developing a thorough understanding of interfacial electronic properties with an ultimate goal to generate functional hybrid materials with tailored electrical and optical properties.   


M. Scheele, D. Hanifi, D. Zherebetskyy, S. T. Chourou, S. Axnanda, B. J. Rancatore, K. Thorkelsson, T. Xu, Z. Liu, L.-W. Wang, Y. Liu, and A. P. Alivisatos. PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport. ACS Nano 8, 2532 (2014).

J.H. Engel, Y. Surendranath, and A.P. Alivisatos. Controlled doping of semiconductor nanocrystals using redox buffers. J. Am. Chem. Soc.134(32), 13200-13203 (2012).

J. Kao, S. J. Jeong, Z. Jiang, D. H. Lee, K. Aissou, C. A. Ross, T. P. Russell, and T. Xu. Direct 3-D Nanoparticle Assemblies in Thin Films via Topographically Patterned Surfaces. Advanced Materials 26(18), 2777-2781 (2014).

S. N. Raja, A. C. K. Olson, K. Thorkelsson, A. J. Luong, L. Hsueh, G. Chang, B. Gludovatz, L. Lin, T. Xu, R. O. Ritchie, and A. P. Alivisatos. Tetrapod Nanocrystals as Fluorescent Stress Probes for Electrospun Nanocomposites. Nano Letters, 13(8), 3915-3922, (2013).


Nuclear Magnetic Resonance

Program Leader: Alex Pines

With the support of the DOE BES, our group develops new methods and instrumentation based on nuclear magnetic resonance for the non-invasive investigation of materials at all length scales. We seek to decrease the dependence of magnetic resonance on the expensive infrastructure of superconducting magnets and cryogenics and to enable new applications with enhanced portability and sensitivity. Current emerging novel methodologies include functionalized magnetic resonance molecular and surface sensors, magnetic resonance detection by laser atomic magnetometry, nanodiamond defect optics and spin hyperpolarization, and magnetic resonance on microfluidic chips. We collaborate with other MSD core programs both to develop new materials and structures used in our own experiments and to pursue exemplary applications to materials science. 


Emondts M., Ledbetter M.P, Pustelny S., Theis T., Patton B., Blanchard J.W, Butler M.C, Budker D., Pines A. Long-lived Heteronuclear Spin-Singlet States in Liquids at a Zero Magnetic Field. Physical Review Letters 112(7), (2014).

K.K. Palaniappan, M.B. Francis, A. Pines, and D.E. Wemmer. Molecular Sensing Using Hyperpolarized Xenon NMR Spectroscopy. Israel Journal of Chemistry 54, 104-112 (2014).

M.G. Shapiro, M.R. Sperling, L.J. Sun, G. Sun, J. Sun, A. Pines, D.V. Schaffer, and V.S. Bajaj. Genetically encoded reporters for hyperpolarized xenon MRI. Nature Chemistry, Adv Online Pub (2014).

J.W. Blanchard, M.P. Ledbetter, T. Theis, M.C. Butler, D. Budker, and A. Pines. High-Resolution Zero-Field NMR J Spectroscopy of Aromatic Compounds. Journal of the American Chemical Society 135(9), 3607-3612 (2013).

T.K. Stevens, K.K. Palaniappan, R.M. Ramirez, M.B. Francis, D.E. Wemmer, and A. Pines. HyperCEST detection of a 129Xe-based contrast agent composed of cryptophane-A molecular cages on a bacteriophage scaffold. Magnetic Resonance in Medicine 69(5), 1245-1252 (2013).

H.J. Wang, C.S. Shin, C.E. Avalos, S.J. Seltzer, D. Budker, A. Pines, and V.S. Bajaj. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nature Communications 4, 1940 (2013).

V.S. Bajaj, J. Paulsen, E. Harel, and A. Pines. Zooming in on microscopic flow by remotely detected MRI. Science 330(6007), 1078-1081 (2010).


Physical Chemistry of Inorganic Nanostructures

Program Leader: A. Paul Alivisatos,
Co-PI's: Stephen R. Leone, Peidong Yang

In this program, we work to advance the synthetic control of nanocrystals and nanowires for their use in Integrated systems; to establish core science and technology for producing, separating, and transporting charges; and to measure and interpret the interactions of nanostructured materials at interfaces, including inorganic-organic, semiconductor-semiconductor, and semiconductor-catalyst interfaces.


J. Vura-Weis, C.-M. Jiang, C. Liu, H. Gao, J. M. Lucas, F. de Groot, P. Yang, A. P. Alivisatos, and S. R. Leone. Femtosecond M2,3-edge spectroscopy of transition metal oxides: photoinduced oxidation state change in α-Fe2O3. J. Phys.Chem. Lett. 4, 3667 (2013).

C. Liu, J. Tang, H. Chen, B. Liu, P. Yang. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett 13, 2989 (2013).

Yuk, J., Kim, K., Alemn, B., Regan, W., Ryu, J., Park, J., Ercius, P., Lee, H., Alivisatos, A., Crommie, M., Lee, J., and Zettl, A. Graphene Veils and Sandwiches. Nano Lett 11(8), 3290-3294 (2011).

Yuk, J., Park, J., Ercius, P., Kim, K., Hellenbusch, D., Crommie, M., Lee, J. , Zettl, A. and Alivisatos, A.  High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Nano Lett 11(8), 3290-3294 (2011).