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Outline of talk

e Introduction to topological insulators (Tls)

e Direct visualization of spins in Tls with laser based ARPES

e Angle resolved time-of flight based ARPES
e Coupling to the spins with light
e Detailed spin maps of topological insulators

eConclusion & Outlook



Ordered phases in condensed matter physics

Classity phases by symmetry

. . . . ‘ . ‘ ‘ ' “a particular symmetry property

Crystal Liquid Crystal Liquid exists or does not exist

Landau

Order identified by a spontaneously broken symmetry :
liquid crystals, magnets, superconductors



2D Quantum Hall Insulator

The first ordered phase beyond symmetry breaking (1980 von Klitzing)
Topological order induced by magnetic field

Protected metallic edge states

Landau levels
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n is PRECISELY an integer even in dirty materials!!!



Topological order in 2D with NO magnetic field e

Topological order induced by spin-orbit coupling ,

Electron spin

Nuclear E-field

zero magnetic field
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Spin-orbit coupled band insulator
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First genuinely 3D topological phase, zero magnetic field

Conducting Bulk Conduicting

A gapless metallic surface state appears

Er —-A"" ————- - - at the surface of a topological insulator!
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Unique properties of ideal 2D helical Dirac cones

Charge current o«c Magnetization

- —— EF
- - . g 7
) =V:S X Z (Raghu et al, 2009)
Potential new functionalities for
spintronic and opto-electronic devices

Absence of backscattering

High mobility ~ 10,000 cm?/V-s (Qu et al, 2010)
Potential for robust and low power electronics

% v
Immunity against non-magnetic disorder '
Surface states are protected by time reversal

symmetry and protected against non-magnetic
disorder

Hasan and Kane Rev.Mod.Phys.82:3045,2010



3D Topological insulators : Playground for new physics

Majorana fermions

Topological quantum computing

clectrons Majorana
or holes fermions

AXion electrodynamics

Qi et al, Science 323, 1184 (2009)

Topological Bose condensate

Topological insulator L/f

Phys. Rev. B 81, 121401(R) (2010)
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The challenges that motivated this work

Probing and control of Spin-momentum locking in real materials

e Dispersion relation is not ideal Dirac cone in real materials
e The response of the spin structure against deviations in the band structure
e Optical manipulation of spin-momentum locking

Dynamical properties of surface states

e So far mostly equilibrium properties have been studied
e Responses to external stimuli such as light or magnetic field etc...
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Ideal Dirac description of Topological Insulators o
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Hasan and Kane Rev.Mod.Phys.82:3045,2010



In reality surfaces are not ideal Dirac cones

To know how charge current and magnetization couple in real materials
Need to understand spin texture over all phase space

Bi,Se;
Lee et al. (2010) — — —
Fu (2010) M =] —» M\
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Kuroda et al (2010)
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Angle resolved time-of-flight laser ARPES at MIT
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Probing Tis with angle resolved time-of-flight laser ARPES
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Simultaneous phase space mapping

Resolved deformation features in Bi,Se,

Wang et al arXiv:1101.5636 (accepted PRL 2011)
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Coupling to the spin with light

Optical (UV) excitation into high energy spin-degenerate bulk states

Transition probability sensitive to angle between angular momentum
of circularly polarized photon and spin

I(E:kx:-k}') Al (E:k)(:k}")
hv 1

spin degenerate

Linear (R) _ (L)
Wang et al arXiv:1101.5636 (accepted PRL 2011)



Simultaneous spin mapping over Dirac cone

Helical photon
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3D vectorial spin analysis

ARPES matrix elements for transitions from helical surface states to bulk
final states are derived from a spin-orbit Hamiltonian

-

o

Difference of R and L ARPES spectra at different sample angles allow \

Independent measurement of <SX> <Sy> <SZ>

over entire phase space

J

Wang et al arXiv:1101.5636 (accepted PRL 2011)



3D vectorial spin analysis

AL =1, =1, = (S, )Reld "4, )+ A[(S.) T4, 4, )

How to disentangle <S,> and <S_>?

Use the symmetry properties...

(b) Bi,Se5(111)

Wang et al arXiv:1101.5636 (accepted PRL 2011)
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3D vectorial spin analysis

AL =1, =1, = a(S, ) Reld 4, J+|Al(S,) {4, 4,

(b) Bi,Se4(111)

.

3 fold rotational symmetry

Time reversal symmetry

Under 60 degree rotation <S, > - <S> while <S> - <S>

A= Iy =1, = (S, Rel4 4, ) - |Ai(S.) im{44,)

Wang et al arXiv:1101.5636 (accepted PRL 2011)
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3D vectorial spin analysis

{Sx>
AT ($=0°) + AT ($p=60)
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Wang et al arXiv:1101.5636 (Submitted 2011)
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Spin texture in the Dirac limit

Helical electrons (E>0)
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‘ S. energy dependence
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3D Spin texture in topological insulators

Low Energy
Helical electrons (E>0)
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Helical holes (E<0)

High Energy
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Deformed Dirac spin-texture
Wang et al arXiv:1101.5636 (accepted PRL 2011)



Unexpected in-plane spin canting
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Summary

*3D band mapping with time of flight
ARPES

e Achieved simultaneous vectorial spin
mapping in Tls by using circularly polarized
light

e Directly observed ideal helical spin
texture at low energies and deviations

from ideal behavior at high energies N\
r
eRevealed S, and canting of the in-plane " WK

spins in Bi,Se
P 23 Deformed Dirac spin-texture
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