## Defining accurate macromolecular structures, conformations, & assemblies in solution

John A. Tainer The Scripps Research Institute Lawrence Berkeley National Laboratory

# by x-ray solution scattering combined with crystallography & computation

# (Funded by DOE & NCI)

ALL DO

## **Advanced Light Source**

## SIBYLS

XBD9904-006



Huge increases in X-ray Flux, Brightness and Brilliance vs
lab X-ray source
Control of key parameters (Beam divergence, Spectral band path, Wavelength and energy resolution)



Idea - cell decision points: use reversible complexes, modified molecules, & molecular machines So use combined SAXS & MX \* Check conformation of fulllength molecules \* Characterize changes allowing super-efficiency \* Clarify solution architectures



SIBYLS-BL: Small Angle X-ray Scattering & Crystallography Berkeley Lab ALS beamline



Bridge from sequences and mutations to functions, phenotypes & cellular outcomes





QuickTime<sup>™</sup> and a YUV420 codec decompressor are needed to see this picture.

## SAXS with nano-gold labeled DNA

50 base pair DNA labeled at both ends with 66Å gold



Measured Signals varying NaCl



• Gold labeled DNA provides excellent signal for time resolved work (~1ms)

- Excellent tool for deciphering macromolecular manipulation of DNA
- A variety of functionalized gold surfaces enable protein labeling as well
- Collaboration with Alivisatos Lab: Shelley Claridge

## SAXS with nano-gold labeled DNA

Fourier transform of measured SAXS data



With 100mM NaCI:

 Gold-Gold distance shifts by 12Å (0.24Å/base)

 Broader 2<sup>nd</sup> peak indicating a larger variety of gold distances: flexing of DNA

# What is the structure of DNA? Rosalind Franklin Useful resolution - depends upon the question

## **Rosalind Franklin viewing** her DNA crystals -1952



Diffraction photo by R. E. Franklin and R. G. Gosling of the Sodium salt of calfthymus B-DNA



# SAXS resolution & structural features

### **Oligomerization states?**

Domain conformations?

### Structural fluctuations?

# **BioEnergy Technologies & Science Integrated Efficiently** (BETSIE) Rhotobacter capsulatus 1 µm Botryococcus braunii Clostridium thermoaceticum carbon fixation, hydrogen, & hydrocarbons C30 botryococcene

# Wood-Ljungdahl pathway: reduce greenhouse gases by converting carbon dioxide to acetyl-CoA



- ancient pathway-use CO and H<sub>2</sub> as energy source and CO<sub>2</sub> as electron acceptor 1 billion years before O<sub>2</sub>
- catalytic efficiencies up to 40,000 mol CO per mol enzyme per second.
- 100 million tons of CO removed from lower atmosphere by bacterial oxidation every year.



## Solution structure modeling of mini-cellulosome -Cellulosic biomass to biofuels



## Hammel et al., 2005

#### Solution structure modeling of minicellulosome

### Rigid body modeling using molecular dynamics

Molecular dynamics is used for exploring of the conformational space of the subdomains protein-complex.









## MAGGIE - Native PCs, MPs, metabolites 2x4L MC Grown in Berkeley

4 x 500L Fermentors Grown in Athens

2x4L MC Grown in **Berkeley** Live Pellets sent to GA 20L Culture Grown In GA

500L Fermentor Sulfolobus 27Feb07 (Run1)

> 1.5 Kilograms Sulfolobus 3x 500L

Rob Rambo (Turning Knobs)

### PCNA & ligase SAXS - interface exchange & conformation



#### Putting the machinery together with SAXS

Modeled Complex

A flexible interface between DNA ligase and a heterotrimeric sliding clamp supports conformational switching and efficient ligation of DNA. Pascal JM, Tsodikov OV, Hura GL, Song W, Cotner EA, Classen S, Tomkinson AE, Tainer JA, and Ellenberger T, *Molecular Cell*, 2006.



Interface Exchange choreography - partners, timing, steps, handoffs, and dynamic movements

- Very high effective molarity by localization
- Scale mechanical forces
   but friction & drag insignificant
- Binding energy drives conformational changes between functional states
- Domain rotations plus disorder-order transitions & deformations allow "magical super efficiency" compared to typical machines & tissue

SAXS-MX-Computation combo for dynamic interfaces & conformations



**Assembly Machinery?** Type IV Pilus (T4P) Membrane & Fiber **Protein Assembly** System L. Craig et al., (2006) Molecular Cell 23:651-62. Testing the Assembly model - how do the secretion super family **ATPases function to** efficiently assemble and disassemble T4P, secrete toxins & assemble archaeal flagella?

## T4P Membrane & Fiber Protein Machine Systems keys to pathogenicity & protein secretion machines



How do secretion super family ATPases act in their secretion & assembly functions?

What is the structure of the assembly ATPase hexamer in solution?

В

Α

С

Test by imaging assemblies in solution by SAXS at the SIBYLS beam line at the ALS







A unified mechanism explains secretion super family ATPase function to efficiently assemble and disassemble T4P SAXS is useful to define solution conformations & mechanisms for assembly machinery for large complexes



## DNA Repair: the major missed aspect of the double helix





DNA Repair key to metabolism, transcription, replication, & cell cycle

# Base damage and ssDNA breaks create DNA double-strand breaks (DSBs) whenever the genome is replicated







#### ATM activation via MRN conformational change



## MR hierarchical composition from SAXS and crystallography





Double-Stand Break repair: MRN on first

Conformational controls Interface mimicry Interface exchange (Lessons from BER and RCR - apply to HRR)

### DNA-dependent Protein Kinase (DNA-PKcs) SAXS solution structure



### SAXS solution structure of DNA-dependent Protein Kinase (DNA-PKcs) vs cryo-EM reconstruction



SAXS solution structure of Ku dimer) vs cryo-EM reconstruction

#### SAXS - Rigid body modeling of KU 70/80 show the extended feature of Ku70 Cterminus (SAP)

→Six rigid body models revealed the possible flexibility of the KU70 CTR (SAP)
 →KU80 CTR have been found on the two main location due to symmetrical structure of the KU7080

• KU70 CTR (SAP) • KU80 CTR • KU70/80 • dummy beads - reconstructed linkers





DNA Replication & Repair PCNA-FEN Fligase: Tom Ellenberger, John Pascale, Brian Chapados

Collaborators: Eva Nogales, Clare Wyman

# (Funded by DOE & NCI)

Secretion Superfamily ATPases: Atsushi Yamagata, Andy Arvai, Mike Pique

**DNA Repair ATPases:** 

David Shin, Lisa Craig, Scott Williams,

SAXS: Greg Hura, Michal Hammel, Susan Tsutakawa MX: Scott Classen, James Holton, Ken Frankel