
Henry Chapman, LLNL

Coherent X-Ray
Diffractive Imaging
at LCLS, FLASH,
and ALS

Gulliver workshop, May 2007

Cop
yri

gh
t m

ate
ria

l - 
do

 no
t u

se
 w

ith
ou

t a
uth

or'
s p

erm
iss

ion



Dose-Resolution relationship for imaging of frozen samples at 10 keV

Every bond
broken above
here

Empirical data compiled by Malcolm Howells, LBL
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X-ray microscopy
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X-ray free-electron lasers may enable atomic-
resolution imaging of biological macromolecules

Combine 105-107 measurements

Classification Averaging Orientation Reconstruction

Noisy diffraction pattern

XFEL
pulse

Particle injection

One pulse, one measurement
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Ultrafast diffractive imaging is a versatile technique

Diffractive imaging recovers an image from diffraction intensities
• No lens aberration or NA limitation
• No depth-of-focus limitation for tomography
• Quantitative phase contrast
• Numerical focusing
• Requires isolated objects
• Computationally demanding if no reference wave provided

Ultrafast X-ray pulses allow:
• Imaging beyond static radiation damage limits (to near-atomic resolution)
• Time-resolved imaging
• Imaging of injected wet cells
• Imaging of aligned particles
• Only one exposure per object
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Coherent diffractive imaging is lensless

Use a computer to phase the scattered light, rather than a lens
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Resolution: 
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Prior knowledge
about object

Algorithm

A lens recombines
the scattered rays
with correct phases
to give the image

An algorithm finds
the phases that are
consistent with
measurements and
prior knowledge
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We perform ab initio image reconstruction with our
“Shrinkwrap” algorithm

qx (1/µm) 0 2 4 6 8

0 5 10 15θx (deg)
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The reconstruction is carried out to the diffraction limit
of the 0.26 NA detector

32 nm, one wavelength

Single pulse FELSEM

1 micron

λ / NA

0 2 4 6 8 10 q (1/µm)
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Phase-retrieval
transfer function
gives an estimate
of the resolution
of the
reconstructed
image

90 nm
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We have reconstructed a 3D X-ray image of a non-
crystalline object at 10 nm resolution

Coherent X-ray diffraction data λ =1.6 nm, from a sample of
50-nm gold spheres arranged on a pyramid

Complete image reconstruction achieved, without any prior
knowledge, using our “shrinkwrap” algorithm, parallelized
for 3D on 32-CPU cluster.  Resolution = 10 nm

Coherent X-ray diffraction data,
rotating the sample -70 to +70
degrees (5×108 data points)

1 micron

SEM image of 3D pyramid test object
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3D reconstruction is achieved by Fourier synthesis

Rotating a sample about one axis
only gives imperfect data filling
in Fourier space
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One diffraction pattern gives
information on the Ewald sphere in
reciprocal space
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2D single-view images have depth information
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True 2D projection images can be formed from a
central section of the 3D diffraction data

A true projection image is obtained from a plane
central section of the 3D diffraction data.  Data must
be collected at many object orientations to achieve this

qx

qz
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We have performed full 3D reconstruction with a
positivity constraint

SEM image of 3D pyramid test

object

Slice 

Projected views from the 3D reconstruction

Complex amplitudes of the image
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We have performed 3D X-ray imaging of Aerogel foam at
10 nm resolution

1 micron

Analysis of the 3D image
revealed anisotropy in the
structure.  Other
characterization techniques
(TEM, SAXS) could not
reveal this

TEM image
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We are using our unique 3D X-ray imaging capabilities
to investigate aerogel structure

Ta2O5 aerogel
(100 mg/cm3),
reconstructed
images along
orthogonal views.

SEM image
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We are entering a new era in x-ray science
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X-rays

FLASH operational now

Current: 100 eV, 20 fs

200 eV, 80 fs, 1013

photons

Tesla Test Facility
DESY, Hamburg

operational 2009

8 keV, 200 fs, 1012

photons

Linac Coherent Light
Source, SLAC, Stanford

LCLS

APS=Advanced Photon Source (ANL)
ALS=Advanced Light Source (LBNL)
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Our diffraction camera can measure forward scattering
close to the direct soft-X-ray FEL beam

Multilayer reflectivity is uniform across
the 30° to 60° gradient

“Soft edge” prevents any
scatter from the hole
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Image reconstructed from an ultrafast FEL diffraction
pattern

1st shot at full power

2nd shot at full power

Reconstructed Image – achieved
diffraction limited resolution!

Wavelength = 32 nm

1 micron

1 micron

SEM of structure etched into
silicon nitride membrane

Chapman et al. Nature Physics 2 839 (2006)
Edge of membrane support
also reconstructed
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Single-particle FEL diffraction of “on-the-fly” particles
has been demonstrated for the first time

FEL Pulse train: 
140 pulses
10 fs duration
10 µs spacing
~20 µJ/pulse 
13.5 nm wavelength

Particle velocity:
200 m/s = 2 mm/10 µs
(c.f. 20 µm beam)

Multilayer mirror 

Particle injector 

TOF mass
spectrometer

Single particle diffraction
pattern (one hit + 269 no-hits)

10 µs spacing

1 2 3 4 5 6 139 1407 8 9 10 11
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We generate particle streams by electrospray aerosol
generation and aerodynamic focusing
Challenges:
• High enough particle density in the beam
• Having a pure sample
• Keeping molecules in “native”

conformation
• Diagnostics and control of particle

trajectories

Electrospray Approach:
• Charged-reduced electrospray and

aerodynamic and electrostatic trajectory
control

• Purification through size selection by
mobility

• Extremely sensitive charge detection and
mass detection to give status of FEL-
particle interaction

Electrospray

Aerodynamic lens

HV

Charged
droplets

Liquid sample Charged
ions

Taylor
cone

ESI Capillary

Controlled
evaporation
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Electrospray

Flow Regulator

CPC

Nanometer
aerosol
sampler

The electrospray system is extremely versatile and we
can select particle size and charge

Electrospray apparatus

1 µm
Differential
Electrophoretic
Mobility Filter

Electrospray

Polydispersed
particles in

Monodispersed
particle aerosol
out

Diameter (nm)

C
ou

nt
s

98 nm latex particle size
distribution “out-of-the-bottle” is

broad
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A mass spectrum is recorded every FEL pulse

The mass spectra show which pulse in the pulse train had hit and how.

H+ N+ O+

H2O+

O2
+

N2
+

Pulse #9: no hit - only
residual gas ionized by
the FEL (red)

Pulse #10: two particles
hit: higher mass ions
(underlined in green)

FEL Pulse train: 
140 pulses
10 fs duration
10 µs spacing
  5 Hz
~20 µJ/pulse 
13.5 nm wavelength

10 fs FEL pulses at 10 µs spacing

1 2 3 4 5 6 1391407 8 9 10 11
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Single-particle FEL diffraction of “on-the-fly” particles
has been demonstrated for the first time

Mass spectrum recorded with LLNL-
design miniaturized time-of-flight mass
spectrometer, from single pulse

Single ~200 nm particle Two particles hit by the one pulse

Reconstructed
image

(Filipe Maia,
Uppsala)
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The particle injection system operates at high efficiency

24hr shift, 18.68 hours of data collection
26 sample changes, 14 different samples
16639 patterns collected, 1873 patterns contained particle scattering
11.6% of patterns contained particles
0.05 Hz average hit rate, maximum >0.5 Hz (camera limited)
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Laser alignment will help establish molecular imaging at
XFELs

J.C.H. Spence and R.B. Doak,
Phys. Rev. Lett. 92, 198102 (2004)

J.C.H. Spence et al., Acta Cryst. A
61, 237 (2005)
D. Starodub et al. J. Chem Phys 123,
244304 (2005)

Equipartition of rotational potential energy with
thermal energy gives

� 

!"
2

=
T

3#10
$8
I!%

T - temperature in K
I - laser power in W/cm2

Δα - polarizability anisotropy in nm3

Larsen, J. Chem Phys 111, 7774 (1999).

Resolution is limited by the degree of
alignment:       d = (L/2) Δθ
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FEL pulses can probe laser alignment interactions

Laser fields can align
particles but they may also
distort them.

Methods exist for impulsive
and adiabatic field-free
alignment.  An ultrafast FEL
pulse can probe alignment

Xu, Optics Express 2006
Alignment of CS2 with 100 fs pulse

Underwood, PRL 2003
Alignment with 15 ps, fast switch-off
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Coherent diffractive imaging can be combined with
lenses to increase robustness

λ

Scanned object
lens

0.5 micron

H. Chapman, Ultramicros. 66 153 (1996)

Scanned (incoherent) Scanned (coherent)

x2 resolution phase
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