## Molecular Structure and Properties **Elucidation from 3D Electron Microscopy**

### Chandrajit Bajaj





Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

### Multi-scale Multi-Modal Imaging

- X-ray crystallography (diffraction)
  - Atomic resolution
  - Difficulties (experimental, computational)
- Nuclear magnetic resonance (NMR)
  - Atomic resolution
  - Limited to small structures

- **Electron Microscopy** 
  - Cryo-electron tomography
    - Low resolution (20Å 200Å)
    - · Good for whole cell or cell organelles
  - Single particle cryo-EM
    - Intermediate resolution (5Å 20Å)
    - Computationally more demanding





Electron tomography (Picture from A.J. Koster et al, JSB, 1997)





Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

# **Image Acquisition**



schematic of possible orientations

2D Cryo-EM map

- Images collected via electron microscopy
- Lowest possible radiation used to limit damage to sample

Annu. Rev. Biophys. Biomol. Struct. 2002. 31:303-19



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

### Quasi Atomic Models from Single Particle Cryo-EM



# Single Particle Cryo-EM Pipeline





Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

### Sub-nanometer Structure Elucidation from 3D-EM



### Single Particle Cryo-EM: Automatic Structure Analysis



Department of Computer Sciences

University of Texas at Austin

# Step #1 : Anisotropic Filtering

Bilateral filtering

$$h(x,\xi) = e^{-\frac{(x-\xi)^2}{2\sigma_d^2}} \cdot e^{-\frac{(f(x)-f(\xi))^2}{2\sigma_r^2}}$$

where  $\sigma_d$  and  $\sigma_r$  are parameters and *f*(.) is the image intensity value.



Anisotropic diffusion filtering

 $\partial_t \phi - \operatorname{div}(a(|\nabla \phi|) | \nabla \phi) = 0$ where **a** stands for the diffusion tensor determined by local curvature estimation.

C. Bajaj, G. Xu, ACM Transactions on Graphics, (2003),22(1), pp. 4- 32.



Center for Computational Visualization http://www Institute of Computational and Engineering Sciences Department of Computer Sciences





W. Jiang, M. Baker, Q. Wu, C. Bajaj, W. Chiu, Journal of Structural Biology, 144, 5,(2003), Pages 114-122

http://www.ices.utexas.edu/CCV

University of Texas at Austin May 2007

# **Step #2: Critical Point Detection**

- For smooth data:
  - zeroes of the gradient vector field
  - simple, easy to implement
- For noisy data:
  - Gradient vector diffusion
  - higher time complexity but robust to noise



- Gradient vector diffusion:
  - smoothing the vector fields
  - diffusion to flat regions

$$\begin{cases} \frac{\partial u}{\partial t} = \mu \cdot div(g(\alpha)\nabla u) \\ \frac{\partial v}{\partial t} = \mu \cdot div(g(\alpha)\nabla v) \end{cases}$$

where  $g(\alpha)$  is a decreasing function  $\alpha$  is the angle between the central pixel and its surrounding pixels.









Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

# Step #3: Symmetry Detection

• Asymmetric subunits in an icosahedra



- Two-fold vertices
- Three-fold vertices
- Five-fold vertices



Local symmetry (RDV) (260 trimers or 720 proteins)



• Correlation search, addtly sped up by Spherical FFT:

Find best c, minimizing:

 $\sum_{\vec{r} \in \mathcal{D}} \left( f(\vec{r}) - f(R_{2\pi/n}(c) \cdot \vec{r}) \right)^2$ 

Y.Zu, C. BajajIEEE Transactions on Image Processin, 2005, 14, 9, 1324-1337



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin

### Results of Automatic Symmetry Detection in Virus and Phage Capsid Shells



## Step #4: Subunit Segmentation

- Multi-seed Fast Marching Method
  - Classify the critical points based on local symmetry into separate groups.
  - Each seed initializes one contour, with its group's membership.
  - Contours march simultaneously. Contours with same membership are merged, while contours with different membership stop each other.



Zeyun, Bajaj IEEE Trans on Imag. Proc.,2005

# Bacteriophage P22





#### Subunit about global **Icosahedral 5 fold axis**

Subunit about local 6 fold axis



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

May 2007

silor

# GroEL

- Chaperonin responsible for protein folding
- Composed of 14 identical subunits
- Subunits have D7 symmetry





- Segmentation from 6 angstrom and and 11.5 angstrom Cryo-EM structures yielded 14 monomers as expected
- Segmentation of 25 angstrom Cryo-EM structure yielded seven segments, each composed of 2 monomers



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin



- Gray= automated segmentation
- Green= crystal structure
- Correlation value generated against x-ray structure
- Accuracy of segmentation relies on resolution of Cryo-EM map
  - -Segments don't always correspond to subunits from low resolution maps



# **Additional Results**

| Subunit                   | Model                                    | Correlation |
|---------------------------|------------------------------------------|-------------|
| RDV P8 trimer             | Manual segmentation, P8 trimer           | 0.74        |
| RDV P8 trimer             | X-ray structure, P8 trimer               | 0.85        |
| RDV P8 monomer            | Manual segmentation, P8 monomer          | 0.80        |
| RDV P8 monomer            | X-ray structure, P8 monomer              | 0.84        |
| P22 tail machine          | X-ray structure, P22 trimeric tail spike | 0.76        |
| 70S ribosome, 50S subunit | X-ray structure, 50S subunit             | 0.63        |
| 70S ribosome, 30S subunit | X-ray structure, 30S subunit             | 0.73        |
| 30S subunit, RNA          | X-ray structure, 30S subunit RNA         | 0.66        |



M. Baker, Z. Yu, W. chiu, C. Bajaj, J of Structural Biology, 2006



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

### Step #5A: Secondary Structure Identification

Gradient tensor

$$(\mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{z}}) = \begin{pmatrix} I_{x}^{2} & I_{x}I_{y} & I_{x}I_{z} \\ I_{x}I_{y} & I_{y}^{2} & I_{y}I_{z} \\ I_{x}I_{z} & I_{y}I_{z} & I_{z}^{2} \end{pmatrix}$$

• Local structure tensor (Weickert'98, Fernandez'03)



$$\begin{pmatrix} I_x^2 * G_\sigma & I_x I_y * G_\sigma & I_x I_z * G_\sigma \\ I_x I_y * G_\sigma & I_y^2 * G_\sigma & I_y I_z * G_\sigma \\ I_x I_z * G_\sigma & I_y I_z * G_\sigma & I_z^2 * G_\sigma \end{pmatrix}$$

Property of local structure tensor eta-sheet •λ<sub>3</sub> ha-helix  $\lambda_3$  $\lambda_{2}$  $\lambda_2$ plane structure Line structure  $\lambda_2 \approx \lambda_3 >> \lambda_1 \approx 0$  $\lambda_1 >> \lambda_2 \approx \lambda_3 \approx 0$ Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences May 2007 University of Texas at Austin **Department of Computer Sciences** 

#### Step #5A: Quasi-Atomic Models



Zeyun, Bajaj, IEEE/ACM Tran on CompBio&BioInf., 2007



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

### Critical Points, their Indices, and their Manifolds

Critical Point of a smooth function is a point where the gradient of the function vanishes.

Index of a critical point is the number of independent directions in which the function decreases.

In 3D, four types of critical points

- 1. Minima index 0
- 2. Saddle of index 1
- 3. Saddle of index 2
- 4. Maxima index 3



Integral curve : A path in the domain of the function on which at every point the tangent to the curve equals the gradient of the function.

Stable Manifold of a critical point is the union of all integral curves ending at the critical point.

Unstable Manifold of a critical point is the union of all integral curves starting at the critical point.



# Medial Axis and Distance Functions

<u>Medial Axis</u> M of a shape S is defined as a set of points which has more than one nearest point on S.



Distance Function  $h_S$  assigns every point x the nearest distance to S.

Approximation of  $h_S$  is done via  $h_P$  when S is known only via a finite set of points P on S.

$$h_P : \mathbb{R}^3 \to \mathbb{R}, \ x \mapsto \min_{p \in P} \|x - p\|$$



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin

# **#5B-I: Secondary Structure Elucidation**



Step 1: Vor/Del(P) computation

Step 2: Identification of Interior Medial Axis M.

Step 3:

3.a: Identification of Critical points of distance function from Vor/Del(P).

3.b: Selection of Critical points only on M.

Step 4: Classification of Medial Axis via
4.a: U<sub>1</sub> – <u>Unstable Manifold of index 1 saddle</u> point on *M* 4.b: U<sub>2</sub> – <u>Unstable Manifold of index 2 saddle</u> point on *M*.

Step 5: Width Test to select the subsets of  $U_1$  ( $\beta$ -sheets) and  $U_2$  ( $\alpha$ -helices).



## **#5B-II: Tertiary Structure Elucidation**



Step 1: Vor/Del(P) computation

Step 2: Identification of Interior Medial Axis M

#### Step 3:

- 3.a: Identification of Critical points of  $h_P$  from Vor/Del(P).
- 3.b: Selection of Critical points only on M.

Step 4: Decomposition of shape via S3 stable manifold of maxima on M

Step 5: Width Test to select the subsets of S3.



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin





Department of Computer Sciences

University of Texas at Austin

### Secondary Structure of RDV Outer Capsid Coat Protein P8 Closeup $U_1$ and $U_2$ Surface U₁ $\alpha$ -helices 15/16 $\beta$ -sheets 3/3 Another View Ribbon Diag. of PDB Helices and Sheets Helices 3D EM map of P8 segmented out from cryo-EM map of

Rice Dwarf Virus (RDV) at 6.8 A resolution



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

#### Secondary Structure of Bacterial Chaperonin GroEL





- $U_1$  and  $U_2$  give superset of sheets and helices.
- $\alpha$ -helix: width 2.5 A and pitch-length 1.5 A [Branden-Tooze]
- β-sheet: thickness 1.5 A [Branden-Tooze]
- $h_P$  values of Voronoi elements constituting  $U_1$  and  $U_2$  help select the subset that passes the width and thickness test.





The tertiary fold of 1AOR is a  $\beta$ -sandwich (two red sheets), which is surrounded by the differently colored helical segments.



The tertiary fold of 1TIM is .a  $\alpha/\beta$ -barrel.

The  $\beta$  -region in the middle is segmented as red while the helical segments surrounding it are colored differently.



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin

### Free Energy of a Macromolecule in Solvent (Towards Flexible Models of Proteins)



## How do we Compute $G_{pol}$

$$G_{\text{pol}} = \frac{1}{2} \int [\phi_{\text{solvent}}(\mathbf{r}) - \phi_{\text{air}}(\mathbf{r})] \rho(\mathbf{r}) dV$$

(a) Poisson-Boltzmann (PB) Theory

$$-\nabla \cdot [\varepsilon(\mathbf{r})\nabla\phi(\mathbf{r})] = 4\pi\rho(\mathbf{r}) + 4\pi\lambda(\mathbf{r})\sum_{j=1}^{\infty} c_j^{\infty} q_j \exp(-q_j\phi(\mathbf{r})/k_B T)$$

Molecular volume V for charge density, dielectric interface

- $\varepsilon$  dielectric coefficients
- $\phi$  electrostatic potential
- $\rho$  solute charge density
- $\lambda$  ion accessibility parameter
  - $\int_{i}^{\infty}$  ion bulk concentration
- $q_i$  ion charge
- $k_{B}$  Boltzmann's constant
- T temperature
- (b) Generalized Born (GB) Theory
  - Born formula (Born 1920), Generalized Born formula (Still 1990)

$$G_{\text{pol}} = -\frac{\tau}{2} \sum_{ij} \frac{q_i q_j}{[r_{ij}^2 + R_i R_j \exp(-\frac{r_{ij}^2}{4R_i R_j})]^{\frac{1}{2}}} \qquad R_i^{-1} = \frac{1}{4\pi} \int_{\text{ex}} \frac{1}{|\mathbf{r} - \mathbf{x}_i|^4} \, dV$$
  
$$\tau = 1 - \frac{1}{\varepsilon_{\text{solv}}} \begin{array}{c} r_{ij} \\ r_{ij}$$

## Step 6b: GB based $G_{pol}$ - Calculation of Born Radii

A single charge  $q_i$  located at the center of atom i in the molecule.

$$G_{\mathrm{pol}} = -rac{ au}{2} rac{q_i^2}{R_i}$$
 (by GB)

On the other hand, by approximating the electric field as the Columbic field,

$$G_{\text{pol}} = -\frac{1}{8\pi} \tau \int_{\text{ex}} \frac{q_i^2}{|\mathbf{r} - \mathbf{x}_i|^4} dV$$



ex: exterior of the molecule

Therefore  $R_i^{-1} = \frac{1}{4\pi} \int_{ex} \frac{1}{|\mathbf{r} - \mathbf{x}_i|^4} dV$ via Gauss' Divergence Thm  $1 - \int_{ex} (\mathbf{r} - \mathbf{x}_i) \cdot \mathbf{p}(\mathbf{r})$ 

$$R_i^{-1} = \frac{1}{4\pi} \int_{\Gamma} \frac{(\mathbf{r} - \mathbf{x}_i) \cdot \mathbf{n}(\mathbf{r})}{|\mathbf{r} - \mathbf{x}_i|^4} \ dS$$

 $\Gamma$  : molecular surface



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin

Step 6b: GB based  $G_{\rm pol}~$  - Fast Calculation of Born Radii

$$R_i^{-1} = \frac{1}{4\pi} \int_{\Gamma} \frac{(\mathbf{r} - \mathbf{x}_i) \cdot \mathbf{n}(\mathbf{r})}{|\mathbf{r} - \mathbf{x}_i|^4} dS \approx \frac{1}{4\pi} \sum_{k=1}^N w_k \frac{(\mathbf{r}_k - \mathbf{x}_i) \cdot \mathbf{n}(\mathbf{r}_k)}{|\mathbf{r}_k - \mathbf{x}_i|^4}, \quad \mathbf{r}_k \in \Gamma$$

Algorithm:

- 1. Generate a model for the molecular surface  $\ \Gamma$  .
- 2. Cubature: choose  $w_k$  and  $\mathbf{r}_k$  properly so that higher order accuracy can be obtained for small N.
- 3. Fast Fourier summation to evaluate  $R_i$ , i = 1, ..., M.

Bajaj, Zhao 2007



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin





### Step 7b: Flexible Match and Fit using generalized modal analysis



Department of Computational and Engl

University of Texas at Austin



### CCV Software

#### **Open Source and in Public Domain**

#### (http://www.ices.utexas.edu/CCV/software/)



# Acknowledgements

- **Group Members** 
  - Albert Chen (CS, Ph.D)
  - Andrew Gillete (Math, Ph.D.)
  - Samrat Goswami (PostDoc)
  - Zeyun Yu (UCSD)\*\*
  - Wenqi Zhao (CAM, Ph.D.)

#### Senior Collaborators

- Tim Baker (UCSD)
- Nathan Baker (WashU)
- Wah Chiu (Baylor)
- Andy McCammon (UCSD)
- Art Olson (Scripps)
- Sponsored by
  - NIH: P20-RR020647, R01-GM074258, **R01-EB004873**
  - **NSF: ITR-IIS-032550**









Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin

# Acknowledgements

- Group Members
  - Albert Chen (CS, Ph.D)
  - Katherine Clarridge (MBE, MD)\*\*
  - Tamal Dey (OSU) \*\*
  - Andrew Gillete (Math, Ph.D.)
  - Samrat Goswami (PostDoc)
  - Inwoo Ha (CS, MS)
  - Insung Ihm (SU,S. Korea)\*\*
  - Sangmin Park (CS, Ph.D.)
  - Myung-Soo Kim (SNU,S. Korea)\*\*
  - Bong-June Kwon (CS, M.S.)
  - Bong-Soo Sohn (KBU,S. Korea)\*\*
  - Jason Sun (Res. Scientist)
  - Vinay Siddahanavalli (CS, Ph.D.)
  - Jesse Sweet (Math, Ph.D.)
  - Mason Weems (CMB, Ph.D.)
  - Guoliang Xu (AS, China)\*\*
  - Zeyun Yu (UCSD)\*\*
  - Xiaoyu Zhang (CSU)\*\*
  - Jessica Zhang (PostDoc)
  - Wengi Zhao (ICES, Ph.D.)

- Senior Collaborators
  - Manfred Auer (LBL)
  - Nathan Baker (Wash. U.)
  - Tim Baker (UCSD)
  - Tom Bartol (Salk)
  - Wah Chiu (Baylor)
  - Gregory Gladish, J. Hazle (MD Anderson)
  - Kirsten Harris (Neuro, UT)
  - Tom Hughes (ICES)
  - Steve Ludtke (Baylor)
  - Andy McCammon (USCD)
  - Tinsley Oden (ICES)
  - Alberto Paoluzzi (U of Roma, Tre)
  - Art Olson, M. Sanner (Scripps)
  - Peter Rossky (ICES)
  - Andre Sali (UCSF)
- Funding
  - NIH: P20-RR020647-01, R01-GM074258, R01-GM073087, R01-EB004873
  - NSF: ITR-IIS-032550, DDDAS-CNS-0540033
  - UT: Ti-3D



Center for Computational Visualization http://www.ices.utexas.edu/CCV Institute of Computational and Engineering Sciences **Department of Computer Sciences** 

University of Texas at Austin