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We have constructed a map of the ‘‘protein structure space’’ by
using the pairwise structural similarity scores calculated for all
nonredundant protein structures determined experimentally. As
expected, proteins with similar structures clustered together in the
map and the overall distribution of structural classes of this map
followed closely that of the map of the ‘‘protein fold space’’ we
have reported previously. Consequently, proteins sharing similar
molecular functions also were found to colocalize in the protein
structure space map, pointing toward a previously undescribed
scheme for structure-based functional inference for remote homo-
logues based on the proximity in the map of the protein structure
space. We found that this scheme consistently outperformed other
predictions made by using either the raw scores or normalized
Z-scores of pairwise DALI structure alignment.

global map of protein universe � multivariate analysis � protein function
prediction � protein structure universe

The molecular functions of a protein can be inferred from
either its sequence or structure information. Sequence-based

function inference methods annotate molecular function of a
protein from its sequence homologues. Most genome-wide
functional annotations are carried out with this scheme, by using
sequence alignment tools such as BLAST (1), or motif�profile-
based search tools such as PROSITE (2, 3) and PFAM (4, 5).
However, when two functionally similar proteins do not share
detectable sequence homology, molecular function cannot be
inferred based solely on sequence information. Low sequence
homology results either from an early branching point at the
protein evolution (also known as remote homologues) or a
convergent evolution. Many studies were focused on the detec-
tion of remote homologues (6–8). In general, methods using
statistical models extracted from multiply aligned sequences
perform better than pairwise sequence comparison methods (9).
However, even these improved methods fail to recognize remote
homologues with sequence identity �25–30%, which is esti-
mated to be �25% of all sequenced proteins.

Structure-based function inference, however, depends less on
sequence information. During protein evolution, homology on
sequence level is far less preserved compared with homology
on structure level. Because proteins fold into specific structures
to perform their molecular functions, structure-based functional
inference is able to characterize remote homologous relation-
ships of proteins that are impossible to detect by using sequences.
By using different random sampling methods and similarity
measuring functions, a large number of structural alignment
algorithms have been developed to measure similarity of a pair
of protein structures. Among these algorithms, DALI (10), SSAP
(11), CE (12), and VAST (13) have been widely used, and their
performances have been assessed [see Koehl (14) for a review].

The issue of predicting the function of remote homologues has
become more prominent recently: the Structural Genomics
initiative (15–19) aims to determine the representative struc-
tures of all protein families in cells. To sample the protein

structural space more efficiently, Structural Genomics projects
employ various ‘‘target selection’’ strategies to filter out proteins
that are homologous to the proteins with structures already in
the Protein Data Bank (PDB) (20). As a result, the molecular
functions of the proteins targeted by Structural Genomics are
often unknown. Once having solved the structure of a novel
protein, a researcher usually searches the protein structure
databases, using software tools such as the DALI online server
(10), for structurally related proteins and infers the molecular
functions based on its structural neighbors. However, when a
protein has a novel fold, its function cannot be inferred based on
proteins of known structure. This work proposes a method to
infer functions of the proteins with new folds based on the map
distance of the protein structure space.

In our earlier study (21) of mapping the ‘‘protein fold space,’’
we built a 3D representation of the protein fold space based on
the pairwise structural dissimilarities among the 498 most com-
mon protein fold domains [Structural Classification of Proteins
database (SCOP); ref. 22] by using a multidimensional scaling
(MDS) (23, 24) procedure. Now, we have extended the method
to a nonredundant protein structure data set from PDB�SELECT
(25, 26) and constructed a ‘‘protein structure space’’ map. We
noticed that proteins sharing similar molecular functions are
located in the vicinity of each other in the structure space map
(SSM). This observation suggests a previously undescribed
scheme to infer protein function based on the distances in the
SSM, especially for those with new folds.

Because of the high-level abstraction, the distance measure in
the protein fold space can capture functional similarity that
cannot be detected by the DALI structure similarity score when
structure alignment is of poor quality or the aligned pair has
different fold. To test this hypothesis, we compared the SSM
distances, DALI similarity scores, and DALI Z-scores to test their
ability to identify 20 protein families of similar molecular
functions. The functional inference scheme based on the SSM
distances is shown to outperform the schemes based on other
scores.

Methods
PDB�SELECT 25 Data Set. The 498 domain-based data sets in our
earlier study (21) was composed of one representative structure
from each of 498 SCOP fold families (22) and thus subject to
possible human bias in classification and domain decomposition.
In this study, we used the PDB�SELECT 25 data set (released
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December, 2002), a representative subset of the PDB database.
This data set was not domain-delineated and its members were
screened by sequence identity and structural quality. The set
contained 1,949 protein chains with �25% pairwise sequence
identity. Of those, 51 chains were further removed because of
low resolution or length requirements of the DALILITE program
(27) that we used to align protein structures. The remaining data
set has 1,898 chains.

Mapping of the Protein Structure Space. Similar to the procedures
that we previously used to construct the map of the protein fold
space (21), the pairwise structural similarity for the 1,898 protein
chains was measured with DALILITE (27). The calculation took
25,000 central processing unit hours on the IBM SP RS�6000
from National Energy Research Scientific Computing. The
1898 � 1898 similarity score matrix [sij] (where i � 1, . . . ,1898;
j � 1, . . . ,1898) was converted to dissimilarity matrix [dij] by
using

dij � �s99.95 � sij, �s99.95 � sij, i � j�
0, �i � j�
s99.95, �otherwise)

,

where s99.95 is the 99.95th percentile of the distribution of all
off-diagonal sij values (i.e., i � j). The dissimilarity matrix then
was subjected to classical MDS procedure to project data into
lower dimensions. We used s99.95 to normalize the few exceed-
ingly large similarity scores to prevent them from dominating the
final structural map.

To facilitate a meaningful interpretation of the high-
dimensional data using lower-dimension projection, we evalu-
ated the minimum dimensions required to capture the essential
features of the data. Specifically, we examined the ‘‘normalized
stress’’ of the MDS procedure with a Scree plot (Fig. 1).
Normalized stress (NS) (24) is a measure of how well the original
dissimilarities dij agree with Euclidean distances d�ij calculated
from the map coordinates xim (ith data point in mth dimension,
up to the kth dimension), given by

NS �

�
ij

�d�ij � dij�
2

�
ij

dij
2 ,

where

d�ij � � �
m�1

k

�xim � xjm�2�1�2

.

As shown by Fig. 1, incremental decrease in NS is small after
third dimension.

Identification of Functionally Similar Protein Pairs with Gene Ontology
(GO) Database. The PDB�SELECT 25 data set contains several
groups of remotely homologous proteins that share similar
molecular functions. For functional descriptors, we used the GO
Consortium (28) descriptors, which provides structured and
comprehensive descriptions of protein functions. For the pro-
teins in the PDB�SELECT 25 data set, families with the top 20 most
represented GO functions are given in Table 1. For each GO
function family, we compiled all pairwise relationships among
the members. For a family of size n, there are n(n	1)�2 pairs.
The combined list from the 20 families gave 93,052 pairwise
relationships. These relationships formed the data set to test a
structure-based protein function inference scheme by using the
distances in the protein SSM.

Structure-Based Inference of Protein Function. First, pairwise Eu-
clidean distances of all 1,898 chain structures were calculated
from coordinates of the protein SSM. Two other scores were
compared against SSM distances with respect to their perfor-
mance in inferring protein functional similarities: DALI similarity
scores (raw scores) and DALI Z-scores. The raw scores and
Z-scores were extracted from the DALILITE structural alignment
algorithm.

Function inference was derived by using the same scheme
regardless of the scoring method. Taking the SSM distance-
based scoring method, for example, all 1,898 � 1,898 pairwise
distances were sorted so that small distances indicated function-
ally similar pairs of proteins. For a given pair of proteins, if their
distance in the structure map was less than a certain threshold,
we predicted them to be functionally similar or related. The same
procedure was applied for the functional inference by using DALI

Fig. 1. Scree plot of the MDS results. A Scree plot evaluates the number of
dimensions most appropriate to represent high-dimensional data in a low-
dimensional space by means of MDS. To measure how fast normalized stress
(NS) diminishes, an empirical parameter called the change rate (CR) is defined
as CRk � (NSk 	 NSk	1)�(NSk
1 	 NSk). The k that gives the largest CR indicates
the optimal number of dimensions for data abstraction. Here, the largest CR
occurs at k � 3. Therefore, the first three dimensions of the MDS projection are
used to represent the protein structure space.

Table 1. Top 20 most populated GO function families among the
1,898-chain data set

Rank* GO number Population Function

1 0003677 252 DNA binding
2 0005515 154 Protein binding
3 0016491 129 Oxidoreductase activity
4 0005524 126 ATP binding
5 0003723 94 RNA binding
6 0006118 92 Electron transport
7 0003676 87 Nucleic acid binding
8 0003824 84 Catalytic activity
9 0005198 73 Structural molecule activity

10 0005509 68 Calcium ion binding
11 0000287 67 Magnesium ion binding
12 0008270 66 Zinc ion binding
13 0005489 65 Electron transporter activity
14 0004872 54 Receptor activity
15 0016798 46 Hydrolase activity, acting on

glycosyl bonds
16 0004519 43 Endonuclease activity
17 0004871 43 Signal transducer activity
18 0004672 40 Protein kinase activity
19 0004518 39 Nuclease activity
20 0004867 35 Serine-type endopeptidase

inhibitor activity

*Ranked by population size.
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similarity scores and Z-scores, although in the case of similarity
scores and Z-scores, higher scores indicate better structural
similarity.

In addition to the above-mentioned scores, we have included
the BLAST E-values of pairwise sequence alignment and applied
them to the same scheme as sequence-based functional infer-
ence. We expected that the sequence-based functional inference
would perform worse than other scores, providing a negative
reference in the performance evaluation.

Performance Evaluation. Predicted functionally similar pairs were
evaluated against the true functionally similar pairs identified
from GO database. We examined the performance of four
different score-based inference methods with the receiver op-
erating characteristic (ROC) plot (29, 30). The ROC curve plots
the true positive fraction among predicted positive pairs vs. the
true negative fraction among predicted negative pairs by using a
continuously varying decision threshold. It depicts both sensi-
tivity and specificity of a prediction method. In a ROC plot, the
diagonal line (0, 0)	(1, 1) denotes prediction methods that
produce equal numbers of true positives and false positives
uniformly, i.e., a totally random method without any predictive
power (31). The further the curves are away above the diagonal
line, the better the prediction result is.

Other statistics that can be used to evaluate predictive meth-
ods are the ROC scores and the median rate of false positives
(mRFP) scores (29, 32). A ROC score is the area under the ROC
curve, and it approximates the probability of correct prediction.
A ROC score of 1 denotes a perfect prediction that distinguishes
all positives from negatives, whereas a ROC score of 0 indicates
that no positives are found given any threshold value. The mRFP
score represents the fraction of functionally unrelated protein
pairs that score as high as or better than the median-scoring
positive pairs. Small mRFP scores indicate better prediction.

Results
Map of the Protein Structure Space. The structures in the
PDB�SELECT 25 data set are based on entire chains and are not
subdivided into structural domains, as opposed to the SCOP
database. Of the 1,898 chains, 1,713 have one-to-one correspon-
dence with a specific structure domain in the SCOP database, and
175 chains are composed of more than one SCOP domain. In Fig.
2A, each structure is represented by a data point in the protein

Fig. 2. Two views of the map of the protein structure space. Each of the 1,898 protein chains is represented by a sphere in the 3D space. (A) �, �, and ��� classes
of structures are distributed in three elongated regions centered around three axes, denoted here as the �, �, and ��� axes. The color descriptions and populations
for each class category are listed in the lower right. (B) The protein structure space viewed from under the �� plane. The members from small protein class are
represented by green spheres. The intersection of �- and �-class axes is defined as the origin.

Fig. 3. The top 10 most populated SCOP superfamilies. The names for super-
families and their corresponding colors are indicated. Note that with the
exception of P-loop-containing nucleoside triphosphate hydrolases, all super-
families have their members clustered together. P-loop-containing proteins
are more spread out because they are defined by a shared sequence motif
rather than global structure similarity.
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structure space, colored by seven categories containing one or
more SCOP-defined class. Four SCOP structure classes were
merged into two categories: all � proteins and coiled-coil
proteins into one category and small proteins and peptides into
another. The 175 chains containing more than one SCOP domain
and 27 structures from SCOP’s multidomain class also were
combined to form the ‘‘multidomain proteins’’ category. For
convenience, we still refer to these categories as ‘‘classes.’’

The global shape of protein structure space based on the
PDB�SELECT 25 data set (Fig. 2 A) appears very similar to the
498-domain fold space (or protein fold space) based on 498 SCOP
domains reported earlier (21). Structures from the �, �, and ���
classes are distributed in three largely nonoverlapping regions,
centered around three axes (defined here as the �, �, and ���
axes). The intersection of the � and � axes is defined as the
‘‘origin’’ of the protein structure space (Fig. 2B). As in the fold
space, the structures of small protein or peptides are mapped
close to the origin. Proteins belonging to five classes (�, �, �
�,

small protein, and membrane protein classes) reside in the ��
plane defined by the � and � axes (Fig. 2B). The ��� axis
originates from near the geometric center of the �� plane.

The protein SSM also contains structures of transmembrane
proteins that were not represented in the protein fold space map.
In Fig. 2, the magenta spheres representing transmembrane
proteins scatter around the far ends of both � and � axes away
from the origin. This bipartite distribution of the membrane
proteins reflects the fact that there are two major types of
transmembrane proteins, mainly � and mainly � types.

In addition to transmembrane proteins, the protein structure
space also includes multidomain protein structures. Very few
multidomain proteins contain structural domains that belong to
the same SCOP classes, and thus most multidomain proteins
behave very similarly to single-domain proteins from ��� and
�
� classes. They spread over the same area where ��� and
�
� classes structures reside.

In Fig. 2B, the protein structures from small protein class

Fig. 4. Performance of structure-based function inference. (A) ROC plot of the performance of function inference. TP, true positives; FP, false positives; TN,
true negatives; FN, false negatives. The green curve denotes ROC curve of the SSM distance-based function inference. The 1:1 line (black), DALI Z-score curve (blue),
and BLAST E-value curve (brown) are close to each other in the x-axis range of 0.2–0.9. Red, DALI similarity score. (B and C) Relative performance of functional
inference methods. Each graph plots the total number of GO function families for which a given method exceeds a cutoff of ROC (B) or mRFP (C) value (32). Large
ROC scores and small mRFP scores indicate better performances of an inference method. (D) GO-family-specific performance of the SSM distance-based functional
inference and DALI similarity score-based functional inference. The green and red asterisks denote families for which the SSM distances and DALI similarity scores
performed better, respectively. The number to the right of each asterisk indicates the GO family number as listed in Table 1. The 20th family (ROC value 0.84
for map distance and 0.65 for DALI similarity score) is not shown in the plot for presentation purposes.
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(green spheres) populate the region near the origin as we have
predicted previously. Note that the same region was scarcely
occupied in the protein fold space map because of the exclusion
of small protein class. We computationally generated several
artificial short stretches of peptides that are randomly structured
and incorporated them to the representative data set to map
them into the structure space. These random structures mapped
very close to the origin (data not shown).

Colocalization of Functionally Similar Proteins in the Protein SSM. A
preliminary test was conducted to examine whether SSM dis-
tances indicate functional similarity. The members within a
superfamily of the SCOP database share similar structures and
related molecular functions (22, 23). Compared with GO func-
tion notations, SCOP superfamily-defined function families have
fewer members (among 1,898 chains, the members of the top 10
most populated superfamilies range from 16 to �37) and thus
more convenient for manual inspection. However, in later
experiments that evaluate the performance of function inference
methods, the more comprehensive GO-defined functionally
similar pairs will be used.

Protein chains that have one-to-one correspondence with
SCOP domains are associated with SCOP’s superfamilies, and the
protein structure space is colored by the top 10 most-populated
superfamilies. The most populated superfamily is the P-loop
containing the nucleoside triphosphate hydrolase superfamily,
with a local sequence motif ([AG]–x(4)–G–K–[ST]) for ATP�
GTP binding. P-loop-containing proteins share similar molec-
ular functions, but their structures vary extensively and thus fail
to cluster. However, the resulting map in Fig. 3 still shows clear
colocalization of structures that belong to the same SCOP super-
families.

Structure-Based Function Inference Based on Protein SSM Distances.
As mentioned in Methods, SSM distances were compared against
three other measures, original DALI similarity scores and Z-
scores and sequence-based BLAST scores, for their performance
in inferring protein functional similarities. The GO definitions of
functions were used to indicate functional similarity between two
proteins.

Fig. 4A displays the ROC curves that correspond to the
performance of four functional inference methods, based on the
SSM distances (green), DALI similarity scores (red), DALI Z-
scores (blue), and BLAST E-values (brown), respectively. Func-
tional inference made from the SSM distances performed con-
sistently better than those made by other scores.

The BLAST E-value-based curve roughly coincides with the 1:1
line (black), which indicates very limited predictive power. This
result was expected because sequence similarities among the
PDB�SELECT entries are very low (�25%). DALI Z-score per-
formed modestly better than BLAST E-values, and the reason for
this poor performance is the normalization method used by DALI
Z-scores. The DALI Z-scores are weighted by the lengths of
protein chains. When one or both proteins are large, the Z-score
becomes comparatively small. Therefore, even if two proteins
share considerable local structure similarity (and thereby pos-
sible functional similarity), Z-score-based functional inference
fails to detect them.

The curves that correspond to DALI similarity score- and
Z-score-based inference display an unusual platform close to the
upper right corner of Fig. 4A. This artifact resulted from the
DALILITE program, which assigns zero similarity score for a pair
of structures with very low structural similarity. In the DALI
similarity score matrix, �10% of all pairwise scores were as-
signed zeros. Therefore, when specificity is close to zero, (that is,
the prediction threshold is very low and almost all pairs are
predicted to be functionally similar), the sensitivity (or the
fraction of true positives) no longer increases. However, such a

low specificity is outside the useful range allowed for practical
applications. This artifact does not interfere with the conclusion
that SSM distance-based function inference performs best
among all four methods.

GO Function Family-Specific Performance. To examine the GO
function family-specific performance, the ROC and mRFP
scores were further evaluated for each GO function family.

Fig. 4 B and C shows the relative performance of all four
functional inference methods ranged over all 20 GO function
families. Both ROC and mRFP scores indicate better perfor-
mance for the SSM distances-based inference method over
other methods. The mRFP scores (Fig. 4C) of the SSM
distances are better than other methods for almost all GO-
function families. These results are consistent with the ROC
curve shown in Fig. 4A.

In Fig. 4D, GO-family-specific performances of the SSM
distance-based functional inference and DALI similarity score-
based functional inference are displayed in a scatter-plot with
respect to their ROC scores. The SSM distances performed
better in 14 of 20 families, whereas DALI similarity score did
better in 6 families. The scatterplot based on mRFP scores (data
not shown) gave similar results.

Discussion
In this study, we constructed a ‘‘map’’ of the protein structure
space with 1,898 protein chains from the PDB�SELECT data set.
This data set contains 1,898 nonredundant protein chains, a
number much larger than the number of representative protein
fold domains used to build our previous fold space map (21). Yet,
both maps show similar ‘‘envelope’’ and trend of distribution,
albeit with different distribution densities. In particular, the
protein structures from three additional categories (namely
multidomain, membrane, and small protein) are included with-
out bringing distortion to the demographic distribution. We
predict that the conceptual SSM that would include all protein
structures would have the same essential features.

We also presented a method that used the distances in the
protein SSM to predict functionally similar protein pairs, espe-
cially for those proteins whose functions are difficult to predict
based on sequence or fold similarity. The SSM distances out-
performed DALI similarity scores in detecting functional simi-
larity between proteins that share limited structural resem-
blance. It improved functional annotation performance of
existing structural alignment programs by emphasizing local
structural relationships that often were buried by noises in the
global alignment score.

One of the examples that demonstrates the advantage of the
SSM distance-based function inference method is the prediction
of two proteins of the GO family 0016491, ‘‘oxidoreductase

Fig. 5. Alignment of two structurally dissimilar but functionally similar
proteins within the oxidoreductase GO-function family. The SSM distance-
based function inference successfully placed this pair among the top 5% of all
1,898 � 1,898 pairs.
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activity.’’ Given a map distance threshold that predicts the top
5% pairs to be functionally similar, chain A of the protein with
PDB ID 1qmv and chain A of PDB 1j9b were predicted
successfully. However, DALI alignment similarity score and Z-
score are 242.3 and 1.7, respectively. Therefore, the DALI algo-
rithm will assign them as structurally different proteins. More-
over, DALI structural similarity matrix fails to rank them within
the top 5% most similar pairs. Structural alignment between
these two proteins is shown in Fig. 5.

When MDS is used to map the protein structure space, the
position of a structure in the space is not based on the highest
similarity score, but instead based on the similarity and, to some
extent, dissimilarity between the structure and every other
protein structure in the data set. In other words, a high similarity
score alone is not sufficient to put a pair of structures close to

each other in the structure space. On the contrary, modest but
consistent similarities among a group of structures will place
them within the same neighborhood. Therefore, the difference
between structural space-based function inference and pairwise
structure comparison is analogous to the difference between
profile-based homology search and pairwise sequence align-
ment. This difference underlies the improved performance of
the SSM distances over DALI similarity scores in the structure-
based function prediction.
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