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We demonstrate using the high-quality experimental data that
turbulent wall jet flows consist of two self-similar layers: a top
layer and a wall layer, separated by a mixing layer where the
velocity is close to maximum. The top and wall layers are signifi-
cantly different from each other, and both exhibit incomplete
similarity, i.e., a strong influence of the width of the slot that had
previously been neglected.

turbulence � turbulent jets � scaling � power law

Turbulent wall jets have many practical uses and have at-
tracted the attention of many experimentalists. There have

been many attempts to find scaling laws for these flows, i.e., to
find dimensionless coordinates in which the velocity distributions
for the various cross-sections collapse to a single curve.

In the present work, we show that earlier attempts to find
scaling laws were based on an erroneous understanding of the
f low structure near the wall, originating from a lack of
resolution near the wall. By using the high-quality experimen-
tal data of Karlsson et al. (1) we demonstrate that turbulent
wall jets possess a more complicated structure than previously
thought. We find that wall jet f lows consist of two self-similar
layers: a top layer and a wall layer, separated by a mixing layer
where the velocity is close to the maximum. Most important is
that the scaling laws in the top and wall layers are substantially
different. Both exhibit incomplete similarity, i.e., a strong
inf luence of the width of the slot that had previously been
neglected.

The general shape of an apparatus that produces wall jet f low
is presented in Fig. 1A; in Fig. 1B we show schematically the
distribution of mean longitudinal velocity. The flow is as follows.
A turbulent jet comes out of a slot. The width of the slot is d, and
the momentum flux per unit thickness of the slot is J. At large
distances from the slot, the fluid is at rest. Unlike the mixing in
a free jet, the mixing here is substantially influenced by the wall
as well as non-symmetric.

At a distance from the slot, large in comparison with the slot
width d but small in comparison with the overall size of the set-up
H, an intermediate-asymptotic f low structure is formed, which
has been the main object of interest for experimentalists; indeed,
many researchers, starting with Prandtl (2) and Tollmien (3),
contributed to its investigation (1, 4–12).

Scaling laws of the form

u
umax

� f� y
y1/2

� [1]

have been proposed for describing this structure, where umax is
the maximum velocity at a given section x, and y1/2 is the
coordinate, which also depends on x, where the mean velocity is
equal to one half of the maximum velocity; this coordinate has
always been taken to be above the point where the maximum
velocity is reached, and indeed in the majority of experiments the
resolution close to the wall has been insufficient to determine the
coordinate under the maximum where one half of the maximum

mean velocity is also achieved, though this coordinate obviously
exists.

To understand the flow, we performed advanced similarity
analysis, using the digitized data of high-quality experiments by
Karlsson and coworkers (1, 11, 12) included in the ERCOFTAC
Classic Database. We found that the situation is more compli-
cated than previously assumed.

In particular, we came to the conclusion that a single self-
similar structure in the wall jet, to which one can apply the scaling
law, does not exist. Instead, we found that wall jet f low consists
of two self-similar flow layers described by significantly different
scaling laws and separated by a mixing layer where the velocity
is close to the maximum. The scaling laws in both self-similar
layers reveal an incomplete similarity, so that the influence of the
slot width remains.

Similarity Analysis of Wall Jet Flow
The phenomenon under consideration has the following gov-
erning parameters: d, width of the slot; [d] � L (the square
brackets denote the dimension of the object in the brackets; L
is a dimension of length); H, a characteristic length size of the
set-up, [H] � L; y, the distance of the observation point from
the wall; x, the longitudinal coordinate of the observation
point, reckoned from a given origin; [x] � [y] � L; J,
momentum flux through unit thickness of the slot; [J] � M�T2,
� � f luid density; [�] � ML�3; � � f luid kinematic viscosity,
[�] � L2T�1; M and T are the dimensions of mass and time,
respectively.
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Fig. 1. The schematic structure of the wall jet flow. (A) The apparatus that
produces a wall jet. (B) The structure of wall jet flow. 1, top self-similar layer; 2,
wall self-similar layer; 3, mixing layer where the velocity is close to maximum.
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Four dimensionless parameters can be formed from the
governing parameters
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H
d
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Every dimensionless property of wall jet f low can be represented
as a function of these parameters. With the large �4 character-
istic of existing high-quality set-ups, it is natural to assume
complete similarity in this parameter so that the value of H is
immaterial. The parameter �3 is an analog of the Reynolds
number; we will denote it by Re.

At large distances from the nozzle, the parameter �2 � x�d
is large. However, a simple assumption of complete similarity in
this parameter at �2 �� 1 does not work, in contrast to the
situation with flow in pipes and boundary layers. The experi-
ments show (see below) that at large Re there exists an inter-
mediate region of distances from the nozzle

d �� x �� H,

where there exists a self-similar structure, but this similarity is
incomplete.

Analysis of Experimental Data and Basic Hypotheses
We used the experimental data obtained by Karlsson and cowork-
ers (1), available in digital form in the ERCOFTAC Classic
Database. First, we noted the obvious (see Fig. 1B): the longitudinal
velocity distribution of the wall jet flow has not one but two
ordinates where the mean velocity has the value 1⁄2umax; we denote
them by y1/2

T (the one above the maximum) and y1/2
W (the one nearer

the wall). Processing the data (12) in bilogarithmic coordinates, we
found that for both of them the scaling laws

y1/2
i � Aid1��ix�i, [3]

where i � T corresponds to the top layer and i � W to the bottom
one, are established after a rather short non-self-similar stage (see
Fig. 2). The values �T and �W are substantially different,

�T � 0.93 � 0.02; �W � 0.68 � 0.02.

Fig. 2. The lines y1/2
T (x) and y1/2

W (x) where the velocity is equal to one half of
the maximum asymptotically approach the two different scaling laws.

Fig. 3. Collapse of the experimental curves y�d1 � �Tx�T, u�umax (A) and y�d1 � �Wx�W, u�umax (B) to different scaling laws; �, x�d � 40; ❋ , x�d � 70; {, x�d �

100; �, x�d � 150.
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Having established this fact we processed the velocity distributions
from the Classic Database in the coordinates Y � y�d1��Tx�T,
U�u�umax (Fig. 3A), and Y � y�d1��Wx�W, U � u�umax (Fig. 3B).

The result of the processing is instructive: a clear collapse to
a single curve in the top part and no collapse in the wall part
in the first case, and vice versa in the second case. In both
cases, the collapse extended to the values of u�umax close
to one.

Thus, the analysis of the data of Karlsson et al. (1) allows us
to suggest the following hypotheses concerning the structure of
wall jet f low.

First Hypothesis. The flow region consists of three layers (Fig. 1B).

1. Top layer, the region around and above the upper line y1/2
T

where the mean velocity is equal to one-half of the maximum
velocity.

2. Wall layer, the region around and below the lower line y1/2
W

where the average velocity is equal to one half of the
maximum velocity.

3. Intermediate layer, the region between the top and wall layers
where the velocity is close to maximum.

Second Hypothesis. At large Reynolds numbers in the top and wall
layers, the flow has the property of incomplete similarity (read
about this concept in detail in ref. 13), so that all dimensionless
quantities can be represented in the form.

���1 , �2 , Re	 � �2
��1��1

�2
� , Re�, [4]

where � and � are Reynolds-number-dependent powers differ-
ent for the top and wall layers; in the third, intermediate layer
the mean velocity is close to the maximum.

We emphasize that these statements are hypotheses and not yet
established facts because they are based on a restricted amount of
experimental data. In particular, we cannot now say anything about
the Reynolds number dependence of the powers. It can be assumed,
by analogy with pipes and boundary layers, that � � 1 � Const�ln
Re; if this assumption is so, then at very large Reynolds numbers
complete similarity will be established.

The relation 4 is in fact a more complicated form of an
incomplete similarity relation than the one that we met previ-
ously in flows in pipes and boundary layers (14, 15)

� � �1
��Re	C�Re	, [5]

where �1 � y��, � � ��u* is the viscous length scale and u* is
the friction velocity. In the original dimensional variables, the
similarity law 4 is represented in the form

� � �x
d�

�

�1� y
d1��x� , Re�, [6]

so that every kinematic property of wall jet f low can be repre-
sented as

z � �J
�
�p

dq��x��2� y
d1��x� , Re�. [7]

Here p and q are Reynolds-number-independent quantities
easily obtained by dimensional analysis because the dimension of
every kinematic property z can be represented as a product of
dimensions of J��, [J��] � L3T�2, and [d] � L. In particular,

the mean velocity distribution u� (y) in both the top and wall layers
can be represented as

u� �y	 � � J
�d�

1
2�x

d�
�

	u�� y
d1��x� , Re�, [8]

and the relations for the top and wall lines corresponding to the
values of the velocity equal to 1

2
umax are represented by Eq. 3.

An important point concerns earlier assumptions of complete
similarity, i.e., the possibility of neglecting d. This hypothesis was
proposed by many authors starting with Prandtl (2) and Tollmien
(3) in the mid-1920s and repeated in various textbooks, in particular
by Landau and Lifshitz (16) (for free jets, mixing layers and wakes;
wall jets were not considered widely at the time this famous book
was composed). According to our processing of the experimental
data, this assumption is incorrect and must be abandoned. Under
the assumption of complete similarity, we should have � � �1�2,
� � 1. Processing of the same high-quality experimental data of
Karlsson et al. showed (see Fig. 4) that � � �0.6, and this fact is an
additional argument in favor of incomplete similarity. More gen-
erally, when faced with multiscale phenomena, researchers should
be cautious in neglecting small parameters.

Here a very important paper by Kotsovinos (17) concerning free
jets should be mentioned. He noticed the lack of linear growth of
y1/2 (x) and proposed a nonlinear relation for this quantity. How-
ever, he did not relate it to the influence of the width of the slot d.
Processing the data of Kotsovinos has given to us the scaling
relation 3 with a value � � 1.1, differing in a statistically significant
way from � � 1, which also reveals that we are in the presence of
incomplete similarity. We direct the reader to a remarkable source
of information about turbulent jets: the comprehensive treatises
(18, 19) by G. N. Abramovich and colleagues.
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