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SUMMARY

Mutations in XPD helicase, required for nucleotide
excision repair (NER) as part of the transcription/re-
pair complex TFIIH, cause three distinct phenotypes:
cancer-prone xeroderma pigmentosum (XP), or ag-
ing disorders Cockayne syndrome (CS), and tricho-
thiodystrophy (TTD). To clarify molecular differences
underlying these diseases, we determined crystal
structures of the XPD catalytic core from Sulfolobus
acidocaldarius and measured mutant enzyme activi-
ties. Substrate-binding grooves separate adjacent
Rad51/RecA-like helicase domains (HD1, HD2) and
an arch formed by 4FeS and Arch domains. XP muta-
tions map along the HD1 ATP-binding edge and HD2
DNA-binding channel and impair helicase activity
essential for NER. XP/CS mutations both impair heli-
case activity and likely affect HD2 functional move-
ment. TTD mutants lose or retain helicase activity
but map to sites in all four domains expected to
cause framework defects impacting TFIIH integrity.
These results provide a foundation for understanding
disease consequences of mutations in XPD and
related 4Fe-4S helicases including FancJ.

INTRODUCTION

Inherited genetic defects in XPD helicase provide an opportunity

to understand how molecular level DNA repair defects impact

cancer and aging phenotypes of the whole organism (de Boer

et al., 2002; Hoeijmakers, 2001; Lehmann, 2001). XPD is a 50-30

SF2 family helicase (Singleton et al., 2007) that opens damaged

DNA for bulky lesion repair in NER. XPD is a core component of

the transcription and repair factor TFIIH (Lainé et al., 2006;

Schaeffer et al., 1993; Sung et al., 1993; Tirode et al., 1999). Mu-

tations in the human XPD helicase gene (ERCC2) are mainly sin-
CELL
gle residue changes and sometimes at adjacent residues; yet,

they cause three strikingly different genetic disorders: XP, CS

combined with XP (XP/CS), and TTD (Lehmann, 2001; Ludovic

et al., 2006). Although all three diseases share a photosensitivity

phenotype, they differ greatly in their predispositions to cancer

or accelerated aging. XP patients show several 1000-fold in-

crease in skin cancer, whereas neither CS nor TTD patients

show an increase in the cancer incidence despite sun sensitivity.

Furthermore, both CS and TTD are premature aging diseases

plus developmental disorders, with CS patients being more se-

verely affected and exhibiting severe mental retardation from

birth. Despite extensive biochemical and cell biological analysis,

key questions remain concerning how point mutations in adja-

cent residues in a single enzyme can give rise to such different

disease phenotypes (Lehmann 2001).

XPD helicase activity is essential for NER but dispensable for

transcription (Coin et al., 2007; Lainé et al., 2006). XPD protein-

protein interactions are critical for both helicase activity and sta-

bility of the TFIIH complex (Dubaele et al. 2003). Mutations in the

XPD C terminus that cause TTD weaken binding to TFIIH subunit

p44 and reduce DNA repair activity (Coin et al. 2007). XPD also

interacts with XPG, and loss of XPG destabilizes TFIIH and its as-

sociation with XPD (Ito et al., 2007). Nuclear receptor transacti-

vations are inhibited by XPD mutations that reduce p44 interac-

tions (Dubaele et al., 2003) and by XPG loss (Ito et al., 2007)

probably due to decreased TFIIH stability. TFIIH from TTD, but

not from XP patients, has basal transcription defects in vitro as

well as reduced in vivo TFIIH concentrations (Dubaele et al.

2003), suggesting XPD’s role in TFIIH stability is impacted by

TTD-causing mutations. Cellular and biochemical analyses pro-

vide detailed information on XPD activities, patient mutations,

and TFIIH stability (Bootsma and Hoeijmakers, 1993; Dubaele

et al., 2003; Winkler et al., 2000). However, an understanding

of the molecular basis for these effects has proven elusive with-

out combined structural and biochemical analyses of the XPD

helicase.

Recent biochemical characterization of the Sulfolobus acido-

caldarius XPD homolog (SaXPD) and yeast genetic analyses
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uncovered a unique Fe-S cluster domain conserved among re-

lated SF2 helicases important for genomic stability including

Chl1, Rtel1, and FancJ (also known as BACH1 and BRIP1),

which is defective in Fanconi anemia (Rudolf et al. 2006). These

studies showed that these XPD-like helicases require a novel Fe-

S cluster region inserted between the Walker A and Walker B

motifs, suggesting that the Fe-S region conformation may be

controlled by ATP binding and hydrolysis, as an analogously

placed insertion is coupled to the ATP binding state in the

Rad50 ABC ATPase (Hopfner et al., 2000). Furthermore, recent

studies on the Ferroplasma acidarmanus XPD protein revealed

that the intact cluster acts in the correct orientation of the XPD

protein at the ssDNA-dsDNA junction (Pugh et al., 2008). This

Fe-S region is biologically critical as a mutation in the XPD Fe-

S region causes TTD (Schumacher et al., 2008), and a FancJ mu-

tation in this region causes severe clinical symptoms of Fanconi

anemia and a predisposition to early-onset breast cancer (Can-

tor et al., 2004; Levran et al., 2005). Although unusual in nuclear

proteins, Fe-S clusters were discovered to act in DNA binding for

DNA repair glycosylases, as originally shown for endonuclease III

(Thayer et al., 1995). Fe-S clusters may also act as electron- and

oxygen-responsive molecular switches on DNA (Boal et al.,

2005; Outten, 2007).

To provide a molecular foundation to address current para-

doxes regarding XPD activities and the role of XPD mutations

in causing distinct human diseases, we determined structures

of SaXPD with and without the Fe-S cluster and analyzed the ac-

tivities of mutations at conserved sites that cause XP, XP/CS,

and TTD diseases. The XPD four-domain fold and architecture,

which is substantially different than expected (Bienstock et al.,

2003), reveal functional roles for the 4Fe-4S cluster and XPD mu-

tation sites relevant to disease-causing defects in XPD as well as

the related 4Fe-4S helicase FancJ. More generally, the relation-

ships of XPD structures and activities characterized here support

a unified understanding of XPD activities and interactions in cell

biology.

RESULTS

Crystal Structure Determination
To understand the XPD structure, we expressed, purified, and

analyzed SaXPD. Sequence alignments show SaXPD represents

the XPD catalytic core (XPDcc) with a 4Fe-4S cluster and all the

helicase motifs conserved with the human XPD (Figures 1A and

S1). The human XPD C-terminal extension, missing in SaXPD, is

predicted to be disordered by PONDR (Romero et al., 2001), and

may act in TFIIH interactions (Figure 1A). To determine the

XPDcc structure and 4Fe-4S cluster role unique to XPD and re-

lated helicases such as FancJ (Rudolf et al., 2006), we there-

fore crystallized SaXPD and solved crystal structures with and

without the bound 4Fe-4S cluster.

SaXPD crystallized in space group P212121 with one molecule

per asymmetric unit (Table 1). We solved the SaXPD crystal

structure by multiwavelength anomalous diffraction (MAD) with

Se-Met substituted protein expressed in bacteria, and refined

the structure to 2 Å resolution (R = 22.3%, Rfree = 26.0%). The

high-quality composite omit electron density maps allowed us

to fit and refine all amino acid residues (1–551). The structure
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extends results on SaXPD sequence and mutagenesis (Rudolf

et al., 2006) by characterizing the XPDcc with all conserved

helicase motifs and the 4Fe-4S cluster.

XPDcc Domain Structure and Architecture
The SaXPD structure shows that the XPD catalytic core is

comprised of four domains: two Rad51/RecA-like domains

(HD1 and HD2) with two additional domains (the 4FeS and Arch

domains) inserted into HD1 (Figures 1, S1, and S2). These

four XPDcc domains contain 22 out of the 26 known disease-

causing point mutation sites; only 4 of the XPD sites are posi-

tioned in the C-terminal extension from HD2 (Figure 1A). HD1

(175 residues: 1–81, 149–192, and 304–353) and HD2 (198 res-

idues: 354–551) share the a-b fold with a central seven-

stranded parallel b sheet flanked by a helices (Figure S2) that

resemble the ATPase domain in Rad51 and RecA (Shin et al.,

2003). The 4FeS (67 residues: 82–148) and Arch (111 residues:

193–303) domains are inserted between adjacent b strands of

the central b sheet of HD1, making them closely connected

to HD1, but relatively independent of HD2 (Figure S2). In con-

trast, known helicase structures typically have domains in-

serted into HD2 (Singleton et al., 2007).

Alignment of the human XPD sequence with the SaXPD se-

quence, secondary structure, and helicase motifs validates

and informs the conserved nature of the XPD fold and domain

structure (Figure S1). The helicase motifs are conserved from

SaXPD to human XPD. HD1 helicase motif I (residues 31–36)

and 1a (50–60) occur before the 4FeS domain insertion followed

by HD1 helicase motif II (177–186). The four Cys residues (88,

102, 105, and 137), which act as ligands to the 4Fe-4S cluster,

are invariant with human XPD (Figure S1). The Arch domain in-

sertion into HD1 occurs between helicase motifs II and III (317–

327) (Figures S1 and S2). The placement of the four HD1 helicase

motifs results in intimate connections between the ATP-binding

and hydrolysis state of HD1 and the conformations of the 4FeS

and Arch domains. The C-terminal HD2 contains the remaining

three conserved helicase motifs IV (394–408), V (439–455), and

VI (501–517). The composite ATP-binding site (motifs I, II, V,

and VI) comes together at the HD1-HD2 interface cleft, as ex-

pected for the inchworm helicase mechanism whereby ATP

binding and hydrolysis drives ssDNA translocation responsible

for helicase activity (Singleton et al., 2007). The SaXPD C termi-

nus ends at the outside edge of HD2, suggesting the C-terminal

region is an extension protruding from the XPDcc (Figures 1B

and 1C), consistent with its role in protein interactions in other

SF2 family helicases (Singleton et al., 2007).

The HD1, 4FeS, and Arch domains lie in the same plane and

thereby form a shallow pentagonal box shape (60 3 60 3 25 Å).

The ellipsoidal HD2 is covalently connected to HD1 (Figures

1B, 1C, and S2) and packs primarily against HD1 (over a 30 3

25 Å interface) and against the Arch domain (15 3 15 Å interface)

on one side of this box to create long deep grooves between

HD2 and the remaining three domains.

HD2 protrudes about 30 Å from the box to form prominent

channels 25 Å long for ATP binding between HD2 and HD1,

and 50 Å long for ssDNA binding between HD2 and the Arch

and 4FeS domains (Figure 1B). In contrast, the side of the box

facing away from HD2 is relatively flat except for a 20 Å diameter



Figure 1. XPDcc Conservation, Functional

Motifs, Mutation Sites, Domains, and

Structure

(A) XPDcc domains. Sequence comparison indi-

cates that SaXPD contains the XPD conserved

catalytic core, so the four XPDcc domains are

shown schematically in boxes for HD1 (cyan),

HD2 (green), 4FeS (orange), and Arch (purple) do-

mains with conserved helicase motifs (red bars

with white labels). Disease XP (red), XP/CS (yel-

low), and TTD (purple) mutation sites are labeled

for human (Hs) and corresponding SaXPD (in pa-

rentheses) sites. Residue F136 corresponding to

a FancJ mutation is highlighted by a blue-green

flag. For the detailed sequence alignment with mu-

tation sites, secondary structure, and domain fold,

see Supplemental Data (Figure S1). The human

enzyme has a partly ordered (gray) C-terminal

extension (CTE) (as predicted by PONDR) that is

a probable TFIIH p44 interface.

(B) XPDcc fold and domains (ribbons). Helicase

domains HD1 (cyan) and HD2 (green) form the

ATP-binding interface. Front view (left) shows the

arch formed by the 4FeS (orange) and Arch (pur-

ple) domains, which are inserted into HD1. Side

view (right) shows HD2 protruding from the flat

box formed by HD1, 4FeS, and Arch as well as

the HD2 helix-loop-helix insertion (green). Domain

boundaries are indicated by residue numbers.

(C) Apo XPDcc structure. Disordered regions

(dashed lines with the boundaries indicated by

residue numbers) show the 4Fe-4S cluster acts

in ordering the 4FeS domain, the Arch interface,

and parts of HD1.

(D) Electron density for the 4Fe-4S cluster and key

residues forming hydrogen bonds (green dashed

lines) to the Cys ligands. Mutations at these sites

cause TTD in XPD and Fanconi anemia in FancJ.

Composite omit maps calculated from the model

are displayed at 1 sigma level.
depression at the junction of the Arch and 4FeS domains suitable

for binding one end of a dsDNA bubble.

The 50-Å-long channel extending along the helicase motifs

in HD2 is gated at both ends by the arch and HD2 gateways.

The arch gateway is located under the arch formed between

the Arch and 4FeS domains. The HD2 gateway lies between

the Arch and HD2, and is formed partly by an HD2 helix-loop-helix

insertion that extends outward to pack around the Arch domain.

Each gateway has dimensions of about 10 3 10 3 10 Å, providing

a possible means to sense bulky DNA damage.

The SaXPD four-domain fold, domain insertions, relative do-

main orientations, and overall architecture are different from
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known helicase structures. The most sim-

ilar existing helicase structure is UvrD,

a helicase acting in the bacterial NER

pathway (Lee and Yang, 2006). The previ-

ously reported XPD structural model,

which was built with rigorous compara-

tive molecular modeling and site-directed

mutagenesis of the bacterial repair pro-
tein UvrB (Bienstock et al., 2003), is substantially different from

the experimentally defined XPDcc (Figure S3).

Arch Domain Structure
The Arch domain, named by its arch-shaped conformation, is

a three-stranded antiparallel b sheet with two a helix pairs, one

of which has an extended loop interacting with a loop from the

4FeS domain. The Arch domain inserts into the HD1 sequence

immediately after helicase motif II and rejoins HD1 in the a helix

preceding helicase motif III (Figures S1 and S2). The b sheet

bridges between the HD1 fold and the Arch domain a helices,

which give the domain its arched shape. The Arch domain is
00, May 30, 2008 ª2008 Elsevier Inc. 791



Table 1. Data Collection and Refinement Statistics

Data Collection wt SeMet MAD l1 SeMet MAD l2 SeMet MAD l3 apo

Wavelength (Å) 0.9800 0.97931 0.97899 0.91837 1.0000

Space Group P212121 P212121 P212121 P212121 P212121

Cell Dimensions (Å) a = 53.54 a = 53.68 same as l1 same as l1 a = 53.39

b = 70.22 b = 70.06 b = 69.81

c = 144.3 c = 145.3 c = 145.2

Resolution (Å) 50-2.00 (2.07-2.00) 50-2.45 (2.54-2.45) 50-2.45 (2.54-2.45) 50-2.45 (2.54-2.45) 50-3.00 (3.11-3.00)

Rsym (%) 2.7 (41.0) 7.5 (65.5) 8.0 (50.7) 7.1 (54.8) 6.6 (32.3)

Completeness (%) 99.0 (97.1) 97.1 (96.0) 97.3 (98.7) 97.1 (98.6) 81.5 (37.7)

I/sigma(I) 35.3 (2.3) 9.6 (4.8) 16.0 (3.9) 15.3 (3.8) 26.0 (2.2)

Unique Reflections 37145 20313 24303 20274 9404

Total Reflections 181139 190108 224711 200497 57268

Refinement wt apo

Resolution (Å) 50-2.00 50-3.00

R factor/Rfree (%) 22.3/26.0 24.1/32.2

Average B Factor (Å2) 41.3 107.3

Protein Atoms 4508 3967

Cofactor Atoms 8 0

Ion/Solvent/Water 0/9/279 1/0/74

Rms Deviations

Bonds (Å) 0.008 0.008

Angles (�) 1.28 4.44

Data in parentheses are those of the highest resolution shell.

Rsym =
P

h

P
ijI(h)i � <I(h)>j/

P
h

P
iI(h)i, where I(h) is the intensity of reflection h,

P
h is the sum over all reflections, and

P
i is the sum over i measure-

ments of reflection h.

R factor =
P
jjFoj � jFcjj/

P
jFoj, where Fo and Fc are the observed and calculated structure factor amplitudes. Rfree is calculated for a randomly chosen

10% of reflections that were not used for structure refinement, and R factor is calculated for the remaining reflections.
strategically positioned via its covalent connections to HD1 to

join the ATP-binding helicase domain to the far edge of the

HD2 motor helicase domain and also to form a small interface

(about 15 3 15 Å) with the 4FeS domain to make an enclosed

tunnel. This tunnel juxtaposes functionally conserved, charged

residues from the Arch domain (R194, R259, and R278) with

functionally conserved, charged, and aromatic side chains posi-

tioned by the 4FeS domain (K84, K103, Y139, and Y140), consis-

tent with a ssDNA-binding role for the tunnel and Arch-4FeS

domain interface. At the opposite face, the junction of the Arch

domain with the 4FeS domain forms half of the 20 Å diameter de-

pression on the otherwise relatively flat back face of the box. One

consequence of the narrow depth and flat back of the arch is that

only about six ssDNA bases would be buried from access to the

approaching NER nuclease XPG, assuming XPG interactions

with DNA resemble those for Fen-1 (Chapados et al., 2004). In

such a situation, the DNA damage could still be accessible for

XPA binding. Thus, this architecture could be relevant to damage

access during NER.

4FeS Cluster Domain Structure
To characterize the native XPD 4Fe-4S cluster without oxidation,

we grew crystals anaerobically and cryocooled them in liquid

nitrogen for X-ray diffraction data collection. The experimental

electron density for the SaXPD crystals grown anaerobically

shows that the 67-residue 4FeS domain contains an 4Fe-4S
792 Cell 133, 789–800, May 30, 2008 ª2008 Elsevier Inc.
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cluster coordinated by four cysteine ligands (Cys88, Cys102,

Cys105, and Cys137) (Figures 1D and S4). All four Fe ions are

present based upon their five sigma peaks in unbiased omit

maps (Figure S4), so we name this domain the 4FeS domain

and the cluster the 4Fe-4S cluster. This 4Fe-4S cluster is sensi-

tive to oxidation, and this redox sensitivity is increased by DNA

substrates (data not shown), explaining the previous character-

ization of SaXPD with a 3Fe cluster (Rudolf et al., 2006) and sup-

porting a potential functional role for cluster oxidation in XPD

functions. The existence of an oxygen-sensitive 4Fe-4S cluster

also implies that previous biochemical XPD characterizations

may reflect a combination of direct mutation effects and indirect

effects complicated by the instability of the 4Fe-4S cluster and

its associated domain.

The 4FeS domain is composed of four helices connected by

loops and stabilized by the interactions of four Cys ligands to

the Fe ions. The first cysteine ligand (SaXPD Cys88) is located

at the C terminus of a one-turn helix connected to HD1. The 13

residues between Fe ion ligands Cys88 and Cys102 form

a loop (here named the Fe cluster loop [FCL]) with a one-turn

helix near the middle. Fe ion ligands Cys102 and Cys105 reside

at the N and C termini of another one-turn helix, respectively.

Cys105 is connected by an extended loop and a helix to

Cys137, which is located at the N terminus of a long helix con-

nected back to HD1. The 4FeS domain structure characterized

here appears characteristic of a helicase damage response



family including FancJ. In our structure, two disease-causing

mutation sites both cause similar defects in the 4Fe-4S cluster

reinforcing its functional significance. The A349P mutation in

FancJ, which can cause severe Fanconi anemia clinical symp-

toms (Levran et al., 2005), would disrupt the hydrogen bond be-

tween the main-chain nitrogen and Fe ion ligand Cys137. Simi-

larly, the XPD TTD mutation R112H (SaXPD K84) disrupts the

charged side-chain hydrogen bond to Fe ion ligand Cys102

(Figure 1D).

To test the structural importance of the 4Fe-4S cluster, we re-

moved the cluster by soaking crystals in a cyrosolution contain-

ing ferricyanide under aerobic conditions. Although apo-XPD

crystals diffracted to lower resolutions, we were able to solve

and refine the apo-SaXPD structure to 3.0 Å resolution (Table 1).

Loss of the Fe-S cluster induced four significant structural

changes (Figure 1C). First, the average overall B factor increased

from 41 to 107 Å2 (Table 1), suggesting the 4Fe-4S cluster has

a role in maintaining the overall stability of the enzyme. Second,

the 4FeS domain is disordered except for parts directly con-

nected to HD1. Third, the Arch domain loop (residues 265–270)

that forms an interface with the FCL is disordered showing the

importance of the 4FeS domain in maintaining the arch and

arch gateway. Fourth, the first eight residues at the N terminus

also become disordered, revealing an intimate connection of the

4FeS domain conformation with HD1.

In the 4Fe-4S bound SaXPD structure, the interface of the Arch

and 4FeS domains involves the interaction of the Arch domain

loop with the FCL. This interface primarily involves polar hydro-

gen bonding and salt-bridge interactions from main-chain and

charged side-chain atoms, suggesting it may have functionally

important flexibility. Loss of the 4Fe-4S cluster did not change

the overall relative orientations among HD1, Arch, and HD2,

but resulted in the rotational opening of the distal helical hairpin

in the Arch domain. The 4Fe-4S cluster therefore is critical to

form the closed interface with the Arch domain and the FCL.

The 4Fe-4S cluster appears critical to SaXPD helicase activity,

consistent with our results on mutations disrupting the cluster

(see below). These structural results suggest that the channel un-

der the arch formed by HD1 and the Arch and 4FeS domains

plays an important role in forming a passageway for ssDNA

translocation during XPD helicase unwinding (see below). The lo-

cation, redox sensitivity, and biological roles of XPD in NER are

consistent with key roles for Fe-S clusters proposed in DNA-

damage sensing (Yavin et al., 2006). These experimental results

on the XPD 4FeS domain have implications for a possible role of

electron transfer along DNA in NER as well as for the function of

related helicases including FancJ.

XPDcc Molecular Surface, Helicase Motifs,
and DNA Binding
To analyze functional implications of the XPDcc structure, we

examined the location of the exposed conserved molecular sur-

face, clusters of positively charged residues along the channel,

and the HD2 helicase motifs for ssDNA interactions, and com-

pared these to existing helicase-DNA cocrystal structures. The

low sequence conservation of SaXPD with the human enzyme

(22% identity and 39% similarity) provides an advantage for

identifying functionally relevant elements, as only regions impor-
CELL
tant to the XPDcc structure and function are likely to be con-

served (Figure S1). Thus, the structure-based alignment and

position of the functional motifs show that conserved residues

cluster in the ssDNA- and ATP-binding grooves between HD1

and HD2, surface areas near the 4Fe-4S cluster, and near the

interface between the Arch and HD2 (Figure 2A).

The electrostatic potential mapped onto the molecular sur-

face shows clusters of positive charge near both ends of the

gated channel (Figures 2B and 2D), but negative charges from

Asp and Glu side chains at the channel rim overlay the channel

where they would restrict a negatively charged ssDNA phos-

phate backbone from moving upward out of the channel. The

surprising channel lid formed from negative charges is reminis-

cent of the use of repulsive charge interactions in trains, where

electromagnetic force is used to suspend, guide, and propel

the train with possible analogies to DNA. The structure also im-

plies that the overall channel appears likely to contribute to

ssDNA binding with no single region contributing most of the

binding energy, consistent with the functional need for ssDNA

to move.

To objectively and comprehensively evaluate all possible

XPD-DNA complexes computationally, we used a complete

six-dimensional systematic computational search. In all of the

analyzed energetically favorable solutions, the dsDNA is located

near both the HD2 and arch gateways. Most energetically favor-

able dockings place dsDNA at the HD2-Arch domain junction,

where the gate formed by the helix-loop-helix protrusion on

HD2 would be an appropriate wedge to hold open dsDNA.

Some favorable solutions place the dsDNA in the depression

at the arch gateway on the flat side of the HD1, Arch, and

4FeS domains. Based upon these objective computational

searches, we therefore positioned the two dsDNA ends of the

in vivo bubble substrates for XPD at these two sites (Figures

2B–2D). All of these top docking solutions of a dsDNA are lo-

cated at the ends of the deep active channel groove, identified

from the helicase motifs. Interestingly, they overlap well with

crystallographically bound glycerol, isopropanol, and citrate

ions that appear to mimic DNA backbone phosphate and sugar

moieties (see below). Our placement of the dsDNA near the

C-terminal extension is also consistent with previous studies

showing that human XPD helicase activity is regulated by inter-

actions of this region with other TFIIH proteins such as p44

(Dubaele et al., 2003).

These dsDNA interactions identified by computational dock-

ing could be reasonably connected via an ssDNA segment

whose position is suggested by the SF2 helicase Hel308 struc-

ture (Büttner et al., 2007) and by matching the dsDNA relative

to the HD2 helicase motifs. In this model, the placement of heli-

case motif IV and motif Ia suggests the ssDNA would be pushed

away from the restrictive tunnel between the Arch and 4FeS

domains by ATP binding (Figure 2C). The resulting distance

between the two dsDNA ends suggests that over 10 nucleotides

of ssDNA are needed to span the channel between the two

gates. Knowing that substantial domain movements can occur

in helicases upon DNA binding (Fan et al., 2006; Lee and Yang,

2006), we avoided computationally optimizing a specific DNA-

bound conformation. However, the overall observed XPDcc

features support a specific working model for DNA interactions
Cell 133, 789–800, May 30, 2008 ª2008 Elsevier Inc. 793
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Figure 2. Structure-Based Model for DNA Interactions

(A) Conserved molecular surface (front view). Conserved residues

are shown on the surface from deep blue (identical) to light blue

(highly similar) to greenish light blue (similar) based on sequence

alignment between HsXPD and SaXPD (Figure S1).

(B) Electrostatic molecular surface of the arch region (back view).

Electrostatic potential (blue positive to red negative) suggests

a dsDNA binding site (arrow).

(C) XPD-DNA binding model (DNA phosphate backbone as purple

tube). ssDNA binding was located by superimposing known heli-

case-DNA complex structures (2P6R.pdb) (Büttner et al., 2007)

to the SaXPD structure over conserved HD2 helicase motifs IV

and VI. The SaXPD dsDNA-binding sites were located by a com-

plete six-dimensional search. Helicase motifs are in red.

(D) Electrostatic molecular surface for the DNA-binding HD2 gate-

way. Electrostatic potential is calculated as in (B) and DNA (yellow

tube) is modeled as in (C).
for comparisons to the observed effects of disease-causing

mutations.

Structural and Functional Placement of XPDcc
Mutation Sites
Based upon the XPDcc structure and modeled DNA interactions,

we examined the apparent functional roles of representative XP,

XP/CS, and TTD mutation sites that appeared to be functionally

conserved in the SaXPD structure (Figures 1A and S1). The

SaXPD structure contains 22 of the 26 known XPD point muta-

tion sites associated with human disease. At the HD2 gate to

the active site channel, residues R531, R373, and K369 protrude

into the computationally predicted DNA and furthermore interact

with bound citrate, isopropanol, and glycerol from the crystalliza-

tion buffer in apparent mimicry with DNA components

(Figure 3A). R373 (R511, the corresponding HsXPD mutation

site, as noted in parentheses from now on) and R531 (R683)

are XP mutation sites, yet the adjacent side chain K369 is not

a known mutation site, so this channel site tests biochemical

impacts (see below). Interestingly, XP site D529N (D681N), which

would not seem to impact an obvious DNA binding residue,

would remove the charged side-chain interaction with R531

that positions the Arg at the proposed DNA-binding site. Thus,

these residues appear to represent DNA-binding site changes

that will impact helicase activity by altering XPD binding to

DNA or ATP.

Within the active site channel extending toward the tunnel un-

der the Arch and 4FeS domains, XP mutation sites T56 (T76),

S402 (S541), Y403 (Y542), and K446 (R601) line one rim of the

active site channel, where they are positioned to interact with

ssDNA. In contrast, the XP/CS mutation site G447 (G602D),

which is adjacent to XP site K446 (R601), will not only impact

DNA binding by placing a negative charge into the channel, but
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also disrupt the main-chain turn structure by replacing

Gly with Asp (Figure 3B). Thus, the Asp at this strategic

site, which is a joint between two tight turns at the

channel rim, restricts functional flexibility compared

to Gly, which has great conformational freedom due

to its absence of any side chain. This Gly site XP/CS

change is distinguished from the XP mutation sites
as it impacts the flexibility of HD2 as well as the DNA-binding

channel.

Other XP and XP/CS mutation sites are associated with the

ATP-binding channel formed between HD1 and HD2. XP/CS

site R514 (R666) forms a charged side-chain hydrogen bond to

backbone carbonyl oxygen that allows functionally important

conformational switching at the HD2 interface with HD1

(Figure 3C). The XP/CS Arg-to-Trp mutation reduces the flexibil-

ity at this site because the type of switching observed for Arg, as

for example at ATP sites in the ATPase GspE (Yamagata and

Tainer, 2007), is restricted for Trp by both its fewer single bond

rotations and its larger ring compared to Arg. The XP/CS muta-

tion G34R (G47R) replaces a flexible Gly in the Walker A motif

(helicase motif I) with a bulky Arg. This mutation replaces the

open ATP binding site with an Arg that permanently fills this

site and can form hydrogen bonds to the adjacent negatively

charged side chains. The attached Arg thus replaces the ATP,

which would be hydrolyzed and exchanged during helicase

cycles, as modeled after structures of UvrD helicase (Lee and

Yang, 2006). Therefore, G34R (G47R) will rigidify the HD2-HD1

interface at the ATP site. In contrast, in this same region the XP

mutation D180N (D234N) breaks a salt bridge from the Asp to

conserved helicase motif I K35 (K48) to impact ATP binding

and helicase activity (Figure 3C), without restricting functionally

important conformational changes.

At the bottom of HD2, the XP/CS C523R mutation (G675R) re-

places a Cys (or Gly) with a more rigid and bulky Arg to greatly

reduce the conformational flexibility of HD2 (Figure 3D). In sharp

contrast, TTD mutation K438P (R592P) removes two charged

side-chain hydrogen bonds from the Lys (or Arg) to main-chain

carbonyls of residues 389 and 392, impacting HD2 structural in-

tegrity by increasing framework flexibility while also reducing

framework stability. TTD mutation D521G (D673G) similarly



Figure 3. Structural Roles of Amino Acid

Residues Associated with Disease-Causing

XPD Mutations

Disease-causing mutations (Ca colored spheres:

XP are red, XP/CS are gold, and TTD are purple)

mapped in the SaXPD structure with hydrogen

bonds (red dashed lines).

(A) Mutation sites at the HD2 gateway DNA-bind-

ing channel shown in Figures 2C and 2D. Solvent

molecules including citrate (CIT), isopropanol

(IPA), and glycerol (GOL) that mimic DNA back-

bone (purple tube, see Figure 2C), interact with

charged residues K369, R373, and D529.

(B) Mutation sites at the groove along HD2, Arch,

and HD1 domains.

(C) Mutation sites at the ATP-binding groove be-

tween HD1 and HD2 domains.

(D) Mutation sites at the edge of HD2 domain.
removes a salt bridge to Arg456 plus charged side-chain hydro-

gen bonds to main chain amino nitrogens of residues 517 and

518. These lost interactions almost certainly cause substantial

increases in framework flexibility that decreases structural integ-

rity in this TTD mutation. The TTD site at K84 (R112) in the 4FeS

domain should reduce framework stability as it removes the

charged hydrogen bond to the Fe ion ligand Cys102 (Figure 1D).

Although we cannot predict their precise molecular defect, addi-

tional TTD mutations that are present in the human C-terminal

extension, which is missing in SaXPD, are predicted to be acces-

sible for protein interactions within TFIIH.

Taken together, the structural analyses of the XP, XP/CS, and

TTD mutations mapped to identical and functionally equivalent

residues in SaXPD prompt specific proposals for the defects

associated with each type of mutation at the XPDcc level. In gen-

eral, these mutations appear structurally positioned to fall into

three classes by their predicted impacts on binding, conforma-

tion, and framework stability: (1) XP mutations should decrease

DNA or ATP binding to impact helicase activity; (2) XP/CS muta-

tions should, besides loss of helicase activity, reduce functional

flexibility to impact the conformational state of the HD1-HD2 in-

terface; and (3) TTD mutations should damage framework inter-

actions to reduce the structural integrity of XPD and thus its pro-

tein interactions. These analyses therefore suggest there should

be differential patterns of impacts on ATPase, helicase, and DNA-

binding measurements for the three classes of XPD mutations.
Mutations in SaXPD Impair ATPase and Helicase Activity
To biochemically test structurally implied roles of XPD mutation

sites along with control mutations, we identified and mutated 15

sites in SaXPD corresponding to the best-conserved human

disease mutations (Taylor et al., 1997), plus two 4Fe-4S clus-

ter-forming cysteines, and K369Q, a test of the proposed

DNA-binding channel (Figure 3A). Our results probed mutations

representing five XP, four XP/CS, and three TTD sites plus the

channel and 4Fe-4S control mutations.
CELL
We found that ssDNA stimulated ATPase activity more than

duplex, overhang, or bubble substrates (data not shown), con-

sistent with activities of other helicases (Singleton et al., 2007).

Wild-type SaXPD had an ATP-hydrolysis rate of 0.55 mol ATP

per second per mol XPD with ssDNA. The majority of our muta-

tions impacted ATP hydrolysis (Figure 4), especially G34R

(G47R) (motif I) and R514W (R666W), which totally lacked

ATPase activity. In addition, D180N (D234N), G447D (G602D),

R531W (R683W), and C102S retained less than 20% of wild-

type level ATP hydrolysis.

Helicase assays were performed on a 50-overhang substrate

and yielded a wild-type rate of 2.22 base pairs per min per

XPD molecule. Most mutations in SaXPD impacted helicase ac-

tivity more severely than ATPase (Figure 4). In contrast to all of

the tested XP and CS mutant enzymes, TTD mutant D521G

(D673G) or K438P (R592P) retained over 20% helicase activity,

supporting the model that TTD mutations result in TFIIH destabi-

lization rather than a catalytic defect. Consistent with this model,

the almost complete loss of helicase activity in the K84H (R112H)

and 4Fe-4S cysteine mutations is likely caused by a gross desta-

bilization of the 4FeS domain, as seen in our ferricyanide-oxi-

dized apo structure (Figure 1C).

To test structurally implied DNA-binding sites, we examined

the ssDNA-binding activity of the mutant enzymes by fluores-

cence anisotropy. As expected from the structural analyses

suggesting a long binding channel, single-site mutations did

not cause a dramatic loss of ssDNA binding in any of the mutant

enzymes tested. The most striking decreases in ssDNA binding

occurred for TTD mutant K84H (R112H), supporting an important

role of the 4FeS cluster domain in binding ssDNA as proposed

(Figure 2). Consistent with these ssDNA-binding results, the

chemical oxidation of the cluster resulted in a rapid loss of the

helicase activity and a more minor reduction in the ATPase activ-

ity (Figure S6), consistent with the apo-XPD structure suggesting

that complete loss of the cluster can impact the integrity of HD1.

At the base of the channel below the arch gateway, XP mu-

tant T56A (T76A) retained 81% ssDNA-binding activity,
Cell 133, 789–800, May 30, 2008 ª2008 Elsevier Inc. 795
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Figure 4. Effects of Disease-Causing XPD Mutations

Catalytic activity and DNA-binding of SaXPD mutants, as percentage of wild-type activity. DNA-binding affinities were not determined for mutants R531W, C88S,

and C102S. See Table 2 for rate and Kd measurements and Figure S5 for representative data.
suggesting it is involved but not critical for binding, as ex-

pected. At the other end of this channel at the HD2 gateway,

XP mutant K446L (R601L/W) and our channel-testing mutant

K369Q also retained 76% of wild-type DNA binding. Moreover,

the XP/CS mutant G447D (G602D), predicted to place a nega-

tive charge in the channel, also showed a significant binding

drop to 68% of the wild-type levels (Figure 4; Table 2). All of

the observed ssDNA-binding changes are consistent with the

channel-exposed residues acting in ssDNA binding. On the

other hand, not all XP/CS mutants inhibit ssDNA binding, as evi-

denced by the marked increase in binding of C523R (G675R)

and G34R (G47R). As G34R (G47R) is at the ATP-binding site

and not associated directly with DNA binding, the increased

DNA binding seen in two of the four XP/CS mutants supports
Table 2. Catalytic Activity and DNA binding of SaXPD Mutants

Human Mutation SaXPD mutation Disease Motif ATPase

Wild-type – – 0.55 (10

T76A T56A XP Ia 0.21 (38

D234N D180N XP II 0.05 (9%

Y542C Y403C XP IV 0.42 (76

R601L/W K446L XP V 0.31 (56

R683W/Q R531W XP 0.01 (2%

K507 K369Q – Channel 0.16 (29

G47R G34R XP/CS I 0.00 (0%

G602D G447D XP/CS 0.07 (13

R666W R514W XP/CS VI 0.00 (0%

G675R C523R XP/CS 0.23 (42

R112H K84H TTD 0.48 (87

R592P K438P TTD V 0.31 (56

D673G D521G TTD 0.19 (35

C116 C88S – 4Fe-4S 0.18 (33

C134 C102S – 4Fe-4S 0.10 (18

Numbers in parentheses indicate percentage of wild-type activity level. ‘‘In
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our proposal that XP/CS mutants create conformationally re-

stricted XPDcc. Such conformational restriction is predicted

to allow tighter DNA binding as less interaction energy is chan-

neled into opening dsDNA and moving the ssDNA along the

channel.

Elegantbiochemical characterizationsof testedhumanXPD mu-

tations (Dubaele et al., 2003) are in striking agreement with our

SaXPD results. Mutations in human XPD corresponding to G34R

(G47R), T56A (T76A), K84H (R112H), D180N (D234N), G447D

(G602D), and R531W (R683W) all show greatly reduced helicase

activity, matching the results observed with SaXPD mutations (Ta-

ble 2; Figure 4). Moderate helicase activity (14%–23%) remained

for mutations at sites in human XPD corresponding to Y403C

(Y542C), K446L (R601L), D521G (D673G), and C523R (G675R),
mol/sec (%wt) Helicase bp/min (%wt) ssDNA Kd (nM) (%wt)

0%) 2.22 (100%) 46.3 (100%)

%) 0.15 (7%) 57.1 (81%)

) 0.05 (2%) 56.3 (82%)

%) 0.42 (19%) 46.0 (101%)

%) 0.32 (14%) 59.0 (78%)

) 0.04 (2%) Ind.

%) 0.29 (13%) 60.9 (76%)

) 0.04 (2%) 29.9 (155%)

%) 0.03 (1%) 68.1 (68%)

) 0.03 (1%) 58.8 (79%)

%) 0.31 (14%) 28.2 (164%)

%) 0.10 (5%) 79.8 (58%)

%) 2.28 (103%) 52.1 (89%)

%) 0.52 (23%) 49.2 (94%)

%) 0.06 (3%) Ind.

%) 0.05 (2%) N.A.

d.’’ – indeterminate value, ‘‘N.A.’’ – not assayed.



Figure 5. Structural Placement of XPDcc

Disease-Causing Mutations

Mapping the three classes of mutations onto the

SaXPD structure reveals patterns associated

with each disease defect.

(A) Stereo pair mapping the distribution of disease-

causing mutations on a XPDcc Ca trace. Disease-

causing mutation sites (Ca colored sphere): red

(XP), gold (XP/CS), and purple (TTD). Residue

F136 (a FancJ mutation) is also shown (cyan).

(B) XPDcc fold and domain architecture (ribbons)

with labeled disease-causing mutation sites as

spheres colored as in (A).

(C) XP mutations impact DNA and ATP-binding

regions.

(D) XP/CS mutations impact HD1-HD2 conforma-

tional changes.

(E) TTD mutations impact overall framework

stability.
as seen for SaXPD (Table 2). High helicase activity in both human

and SaXPD was seen for the SaXPD site K438P (R592P).

These results appear to corroborate the structural and func-

tional models of the three distinct XPD-related diseases. XP mu-

tations primarily impair helicase activity, as none of these muta-

tions display helicase activity above 20% of wild-type (Table 2).

Because ATPase activity is retained in some of these mutants,

we posit that XP mutations affect the ability of XPD helicase to

translocate along the DNA. Likewise, XP/CS mutations also se-

verely impact helicase activity and, based on their crucial loca-

tion at the HD1-HD2 interface, will prevent functionally important

conformational changes. This reduction of conformational flexi-

bility should reasonably impact both helicase activity and critical
Cell 133, 789–8
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protein-protein interactions of XPD as

part of the TFIIH complex, resulting in

its more severe phenotype. In contrast,

TTD mutations do not necessarily lose

helicase activity. Instead, these muta-

tions are predicted to disrupt framework

stability, resulting in reduced stability of

XPD interactions with its protein partners.

The 4Fe-4S cluster mutations, C88S and

C102S, which also destabilize tertiary

structure, completely abolish helicase

activity, supporting the hypothesis that

the cluster is essential for XPD catalytic

activity (Rudolf et al., 2006). The patterns

of residue roles suggested by our com-

bined structural and mutational analyses

are clarified by mapping the three classes

of XPD mutation sites onto the Ca posi-

tions in the SaXPD structure (Figure 5).

DISCUSSION

Without structural information, XPD

patient mutations have been difficult to

understand, since patient phenotypes cannot be predicted

from the position of an individual mutation along the linear

gene sequence and since adjacent mutations can cause differ-

ent diseases. Our SaXPD crystal structures and biochemical

assays, done under conditions to limit oxidation of the 4Fe-4S

cluster, provide an informative framework to reduce this com-

plexity. As a working hypothesis that can now be tested in a

variety of experimental systems, we have herein divided XPD

mutations into three classes by their predicted impacts: (1)

ATP and DNA binding for XP, (2) conformation for XP/CS, and

(3) framework for TTD (Figure 5).

XP mutations tend to be in the predicted DNA- or ATP-bind-

ing channels, but all those tested reduce helicase activity and
00, May 30, 2008 ª2008 Elsevier Inc. 797



hence must reduce bubble opening in NER; this observation

provides a structural explanation for biochemically based pre-

dictions from human XPD (Botta et al., 2002; Dubaele et al.,

2003; Theron et al., 2005). XP mutations furthermore tend to

reduce rather than increase DNA binding, so XPD mutant com-

plexes are unlikely to stay bound on DNA substrates and act to

block other processes.

XP/CS mutations cause the loss of both helicase activity and the

functional flexibility of HD1-HD2, but possess substantial DNA-

binding affinity in two of four mutants analyzed (Figure 4). The ab-

errant conformations thus produce a loss of NER function without

necessarily reducing DNA binding at target sites. Furthermore, the

conformational switching driven by ATP- and DNA-binding states

is likely to affect dynamic protein-protein interactions within the

TFIIH complex and with other critical protein partners including

XPG. A conformationally restricted state of XPD may affect protein

interactions that normally differ between TFIIH functions in tran-

scription initiation versus NER or transcription-coupled repair

(TCR), resulting incontext-inappropriate interactionsand activities

(Sarker etal., 2005). If so, then thismight explain the otherwise per-

plexing biological observation that XP/CS mutations in XPD, but

not XP or TTD mutations, result in NER-dependent inappropriate

incisions at transcription sites distant from DNA damage (Theron

et al., 2005). If XP/CS mutations cause HD1-HD2 to become

locked in an abnormal conformation, this could promote changes

in protein-protein interactions that specifically affect TFIIH func-

tions in TCR, defects in which are the molecular hallmark of CS.

Our structural results would predict that at least some of these

interactions should be with HD2, so this can now be tested by ex-

periments to map the interaction domains of XPD with RNA Pol II,

CSB, and XPG. The high-resolution SaXPD structure fits into yeast

and human TFIIH electron microscopy reconstructions, suggest-

ing that the conserved XPD catalytic core informs the overall TFIIH

architectural arrangement with the HsXPD Arch and C-terminal

extensions likely involved in interactions (Figure S7). The compu-

tational placement of the XPD and XPB crystal structures within

the TFIIH ring suggests XPD and XPB could cooperate in opening

the DNA for NER, consistent with known XPB and XPD activities

(Fan et al., 2006; Coin et al., 2007).

TTD mutations do not necessarily reduce helicase activity but

are predicted to cause framework defects expected to impact

levels of XPD as well as the stability of TFIIH, matching prior ob-

servations on human XPD biochemistry (Vermeulen et al., 2001;

Dubaele et al., 2003). XPD C-terminal modifications weaken the

interaction with p44 and thereby disturb the conformation of

TFIIH (Dubaele et al., 2003), consistent with the XPD C-terminal

extension being available for protein interactions. Our results

also suggest that many TTD mutations impact XPD-protein inter-

actions indirectly by primarily acting as framework defects. This

structure-based interpretation agrees with the observed cell bi-

ology, as there is reduced TFIIH in cells homozygous for the

R112H mutation, which does not affect the XPD interaction

with its p44 partner in TFIIH (Dubaele et al., 2003).

The mutation R112H (K84H in SaXPD), which involves a loss of

the hydrogen bond to a Cys ligand of the 4Fe-4S cluster, also

highlights the importance of the 4FeS domain. The gated chan-

nel and position of the 4Fe-4S cluster in XPD appear ideal for ef-

ficient damage sensing. The 4Fe-4S placement makes sense if
798 Cell 133, 789–800, May 30, 2008 ª2008 Elsevier Inc.
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the cluster is to be a detector of different types of bulky damage

in DNA, consistent with experiments showing that 4Fe-4S cluster

proteins are held at damaged sites where the clusters become

oxidized (Yavin et al., 2006). The controlled oxidation of the

4Fe-4S cluster provides an elegant way for the cluster to poten-

tially substantially augment DNA detection by the gateways at

both ends of the XPD DNA-binding channel.

These XPDcc mutant analyses characterize primary defects.

However, biological and clinical features of XPD mutations will

depend upon their local severity combined with their impacts

on interactions and functions at the next level. Yet our results

suggest that most TTD and XP/CS mutations impact macromo-

lecular interactions indirectly and in opposing ways, both of

which may reduce TFIIH integrity, as shown experimentally

(Vermeulen et al., 2001). Whereas TTD mutations should in-

crease framework flexibility, XP/CS mutations appear to de-

crease HD1-HD2 functional flexibility. These structural results

provide a basis to evaluate the likely impacts of such changes

and to understand differences observed between cellular and

clinical phenotypes. Consistent with activity analyses (Clarkson

and Wood, 2005), these structural results would not, for

example, support a functional repair role for XPD polymorphism

D312N, which is in a surface-exposed position pointing away

from the DNA-binding channel. These new results thus broaden

our understanding of how XPD structural changes might impact

cancer risks or result in developmental/aging phenotypes.
EXPERIMENTAL PROCEDURES

Cloning and Recombinant Protein Production

The XPD gene was amplified from Sulfolobus acidocaldarius genomic DNA

and cloned into the pET15b vector for expression of untagged recombinant

protein in E. coli. Protein expression and purification procedures were based

on those published (Rudolf et al. 2006) with minor modifications. Mutants

were generated using the Quikchange II XL Kit (Stratagene). SaXPD wild-

type and mutant protein expression was carried out in BL21 Rosetta2 cells

(Invitrogen) with details as described in Supplemental Data.

Crystallization, Data Collection, Structure Determination,

Refinement, and Analysis

Purified SaXPD protein was concentrated to 10–20 mg/mL for crystallization

experiments by vapor diffusion in an anaerobic glovebox for data collection

using synchrotron radiation. The initial phases for SaXPD structure were cal-

culated from the MAD data (Table 1), and the structures determined and

refined as described in Supplemental Data. Docking analyses were done

with DOT as described in Supplemental Data.

ATPase, Helicase, and DNA-Binding Assays

ATPase activity was measured by incubating SaXPD with g-32P-ATP at 45�C

and separating free phosphate by thin-layer chromatography. Helicase activity

was measured by incubating SaXPD with 50-overhang DNA substrates at 55�C

and resolving unwound labeled product by native PAGE. To minimize expo-

sure of the protein to oxygen, all pipetting steps except for setting up the final

reaction mixture were carried out in a nitrogen glove bag. SaXPD-DNA interac-

tions were measured by fluorescence anisotropy. Details for all activity assays

are described in the Supplemental Data.
ACCESSION NUMBERS

Atomic coordinates and structure factors have been deposited in the Protein

Data Bank with the ID code 3CRV for SaXPD and 3CRW for the apo SaXPD.



SUPPLEMENTAL DATA

Supplemental Data include seven figures, Supplemental Experimental Proce-

dures, and Supplemental References and can be found with this article online

at http://www.cell.com/cgi/content/full/133/5/789/DC1/.
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