### **Report on the NABIR Workshop**

### **Application of Genomic Technology to Bioremediation**

December 5-7, 1999 Arlington, VA

## Jizhong Zhou, Darrell P. Chandler, and Fred J. Brockman

DOE Contact: Anna Palmisano

## **PURPOSE**

The mixed wastes containing metals, radionuclides, and solvents in many DOE contaminated field sites are an immediate and complex challenge to DOE waste management responsibilities. Although *in situ* bioremediation remains the most potent technology for treating such mixed wastes, a potential difficulty in implementing bioremediation is that the predictability of bioremediation process performance cannot be made with confidence. In some cases, predictability is limited by the lack of fundamental knowledge about microbial community structure, composition, functions, and dynamic changes under different environmental conditions; and in other cases, by the lack of accurate parameter estimation. Current methods for measuring and evaluating the effectiveness of bioremediation are too cumbersome. Rapid, simple, reliable, quantitative and cost-effective tools that can be operated in real-time and in field-scale heterogeneous environments for assessing bioremediation endpoints are needed.

The purpose of this NABIR workshop was to bring people with different technical backgrounds together, promote scientific exchange, discuss the theoretical and practical implications of advanced genomic technologies within a bioremediation context, and identify scientific needs.

#### **STRUCTURE**

The focus of this workshop was specifically on the recently developed genomic technologies (nucleic acid, whole-genome, proteome) that might provide more simple, near-real time, field-deployable, specific, sensitive, quantitative and cost-effective analytical tools and techniques for monitoring *in situ* microbial communities in natural environments. Four scientific sessions were arranged and 40 people from different fields attended this workshop (see Appendix for the program agenda and participant list). Readers are encouraged to contact speakers and participants directly for presentation copies or in-depth discussions. Readers can also contact the organizers for help in obtaining presentation copies.

Before the scientific discussion, Dr. Anna Palmisano gave a welcome remark and Dr. Jizhong Zhou highlighted the needs, goals and structure of this workshop. Dr. James M. Tiedje initiated Session I with a discussion of key issues and challenges for analyzing microbial ecology and community dynamics within the context of bioremediation.

Diversity, quantitation, sensitivity, function, cause and effect were identified as significant challenges. In subsequent sessions, speakers amplified on these themes and issues relative to environmental analyses. Speakers in Session I highlighted common molecular techniques employed by the environmental microbiology community for those participants that are not that familiar with existing nucleic acid techniques. Session II focused on the recent developments in microarray technology with emphasis on the merits and limitations of existing microarray printing, hybridization and analysis techniques. Included in Session II were industry participants, who provided a very balanced and well-rounded perspective of their own (and competing) microarray systems. Session III highlighted some successful examples of microarray technology for genomic studies, and exploratory studies for microbial community analysis. Session IV included a review of other genomic technologies and a roundtable discussion of key issues for advancing technology within NABIR, such as specificity, sensitivity, quantification and cost analysis of genomic technologies

# **MAJOR THEMES and CONCERNS**

*Diversity* and *quantitation* were identified as the greatest challenges facing environmental microbiologists (Fig. 1). Other concerns related to sensitivity, specificity, activity, reproducibility, bias and functions were also addressed. Genomic technologies were discussed from the point of sample collection and nucleic acid extraction, through detection and the development of real-time, integrated systems to be utilized at the point of use. It was noted that different types of bioremediation require different types of microbial information, and that the relative importance of NABIR related concerns (Fig 1) is dependent upon the bioremediation scenario. That is, intrinsic bioremediation puts more emphasis on microbial presence, function, and detector sensitivities. Biostimulation requires quantitation of microbial diversity, competition, stability, and succession processes. Bioagumentation, on the other hand, requires quantitation for microbial tracking, dispersal, and activity (expression).

Several different microarray formats were also discussed, including planar arrays, suspension arrays, gel pad arrays, and various methods for hybridization enhancement. An important admission from all microarray presenters was that existing technology provides *relative*, not absolute, quantitation of target genes. Hence, all changes in gene expression or abundance are relative to a baseline condition. The importance of reproducible, quantitative nucleic acid extraction, amplification, labeling and detection techniques therefore became more obvious, and was discussed extensively in the roundtable sessions.

PCR-based techniques were discussed primarily within the context of assessing total microbial diversity or quantifying individual genes/microorganisms. The ability of PCR to quantitatively and faithfully reproduce *total* in situ microbial diversity is unknown; the implications of this uncertainty for microarray-based detection systems was a major focal point of the roundtable discussions. The greatest challenge is how to couple the sensitive, single gene-based PCR technology with the multiple genes-based microarrays hybridization for quantitatively assessing microbial community structure and activity in natural environments.



# **Major Themes and Discussion Topics**

Genomic Technology

Figure 1. The spectrum of NABIR-related concerns against the workshop topic areas, with 'X' denoting areas of greatest discussion (and uncertainty).

Compared to conventional molecular methods, microarrays offer the additional advantages of high sensitivity, rapid detection, lower cost, automation, two-color hybridization detection (for simultaneous display of differential gene expression), and low background levels. Although the power of DNA microarrays to assess microbial diversity and activity was obvious, the following questions and concerns were expressed: (1) How are microarrays implemented in a bioremediation context. (2) What gene sequences should be targeted for microarray construction? (3) Are microarray hybridization quantitative? (4) If PCR is a limiting factor, can we develop microarrays to avoid PCR? (5) Can PCR-based quantitative methods be coupled with microarray hybridization for quantifying microbial community structure and activity when the biomass in environmental samples is low; (6) Can 16S rRNA gene-based oligonucleotide microarrays be designed and constructed for analyzing microbial community structure and activity with reliable specificity? (7) How do environmental contaminants affect microarray hybridization? (8) How do we rapidly compare microarray hybridization data with many different samples and extrapolate functional pathways?

# SCIENTIFIC NEEDS

Genomics and microarray-based technology represent a potential revolution in biological sciences. Although genomic technologies are extremely powerful tools for

monitoring gene expression and detecting genetic polymorphisms, the concept and performances of microarray hybridization have not been tested rigorously with complicated environmental samples. Studies on microarray hybridization, especially oligonucleotide microarrays, are needed in terms of specificity, sensitivity, quantitation, activity and data analysis within the context of environmental samples.

*Diversity* issues have so far prevented any 'standardization' of genomic techniques for routine implementation in a bioremediation context. Therefore, the group suggested working towards generally accepted means of evaluating purification procedures; developing generally accepted lysis procedures; understanding humic substances and their interaction with nucleic acids; developing simultaneous DNA/RNA extraction methods; and establishing a set of microorganisms to benchmark extraction efficiencies across different methods and sample types. Because the adsorption properties of different samples are so different, the group also recommended 'qualifying' measures of extraction/detection efficiency with a measure of copies per µg extracted DNA or RNA, NOT copies per g of soil.

Techniques that show differences in community structure along spatial, temporal or chemical gradients are still useful. However, there was significant concern regarding the genes that are important to monitor in any given situation. This concern was related to our incomplete understanding of relevant microorganisms for any bioremediation activity. To advance genomic technologies into the areas of metabolic potential and function, cause and effect and in-field bioremediation applications, it was recognized that future developments in RNA analysis and automated, integrated systems will be required. Finally, accuracy and absolute quantitation will be important because bioremediation is a field dominated by engineers, and genomic information must be correlated with chemical/physical measures obtained by other analytical methods.

# Appendix A: Program Agenda

#### US Department of Energy NABIR Workshop

#### Application of Genomic Technology to Bioremediation

#### Doubletree Hotel, Arlington, VA December 5–7, 1999

#### Goals

- To discuss and assess genomic technologies that offer the promise and potentials for providing large scale, real time, and fieldapplicable tools for microbial community analysis and characterization.
- To discuss and identify the problems, challenges and strategies of applying genomic technology to in situ bioremediation.

#### Sunday, December 5, 1999 Arrival Monday, December 6, 1999 7:00-8:00 Breakfast 8:00-8:05 Welcoming remarks Anna Palmisano DOE 8:05-8:15 Workshop structure, goals, and desired products Jizhong Zhou Oak Ridge National Laboratory Session I: Introduction and overview of molecular methods for microbial community analysis 8:15-8:45 Key issues and challenges in studying microbial ecology and James M. Tiedje Michigan State community dynamics University 8:45-9:15 Kinetics effects in the amplification of mixed populations of Oregon State University Stephen Giovannoni homologs by the polymerase chain reaction 9:15-9:45 Allison Murray / Michigan State Systematic community analysis using T-RFLP and DGGE Terry Marsh University 9:45-10:15 Analysis of large genomic fragments derived from complex Monterey Bay Ed DeLong microbial assemblages: applications for identification, Aquarium Research quantification, and characterization of uncultivated Institute microorganisms Quantitative PCR 10:15-10:45 Andy Ogram University of Florida 10:45-11:00 Break Session II: Microarray Technology 11:00-11:30 Cartesian Technology Printing technologies for microarray construction Don Rose 11:30-12:00 Analysis of microarrays labeled with multiple fluors using a Ernie Kawasaki **GSI** Lumonics confocal, four laser scanner 12:00-12:30 Genosensor-based ecotoxicity response assessment Ken Beattie Oak Ridge National Laboratory 12:30-1:30 Lunch

#### Program agenda

| Session III: Applica | tions and potentials of microarray technology for genomic and environ | mental studies   |                      |  |  |
|----------------------|-----------------------------------------------------------------------|------------------|----------------------|--|--|
|                      |                                                                       |                  |                      |  |  |
| 1.30-2.00            | DNA microarray technology development                                 | Mark Schena      | Stanford University  |  |  |
| 2:00-2:30            | DNA microarrays for monitoring gene expression in                     | Marty Voskuil    | Stanford University  |  |  |
|                      | mycobacterium tuberculosis                                            |                  | 2                    |  |  |
| 2:30-3:00            | DNA Microarray for Monitoring the Stage of Bioremediation             | Mary Lowe        | Loyola College,      |  |  |
|                      |                                                                       |                  | Maryland             |  |  |
| 3:00-3:30            | Break                                                                 |                  |                      |  |  |
| 3:30-4:00            | Oligonucleotide microarrays and direct nucleic acid detection         | Darrell Chandler | Pacific Northwest    |  |  |
|                      | from environmental samples (i.e., no PCR)                             |                  | National Laboratory  |  |  |
| 4:00-4:30            | Oligonucleotide microarrays for distinguishing nitrifiers             | John Kelly       | Northwestern         |  |  |
| 1 20 5 00            |                                                                       | T 1 71           | University           |  |  |
| 4:30-5:00            | DNA microarrays for microbial community characterization              | Jizhong Zhou     | Oak Ridge National   |  |  |
|                      |                                                                       |                  | Laboratory           |  |  |
| Tuesday December     | r 7 1999                                                              |                  |                      |  |  |
| Tucsuay, December    |                                                                       |                  |                      |  |  |
|                      |                                                                       |                  |                      |  |  |
| 7:00-8:00            | Breakfast                                                             |                  |                      |  |  |
|                      |                                                                       |                  |                      |  |  |
|                      |                                                                       |                  |                      |  |  |
| Session IV: Roundta  | able discussion (A) Other genomic technology; (B) key issues to NAB   | IR               |                      |  |  |
|                      |                                                                       | -                |                      |  |  |
|                      |                                                                       | Darrell Chandler | Pacific Northwest    |  |  |
| 8:00-8:05            | Other genomic technology                                              |                  | National Laboratory  |  |  |
| 8:05-8:30            | PCR on chips                                                          | Robert Foote     | Oak Ridge National   |  |  |
| 0.00.0.55            |                                                                       |                  | Laboratory           |  |  |
| 8:30-8:55            | Laser desorption mass spectrometry for microbial DNA analysis         | C.H. Chen        | Oals Didge Matienal  |  |  |
|                      |                                                                       |                  | Laboratory           |  |  |
| 8.55-9.20            | Overview of other microarray technologies                             | Darrell Chandler | Pacific Northwest    |  |  |
| 0.55 9.20            | overview of other interoarray technologies                            | Darren Chanaler  | National Laboratory  |  |  |
| 9:20-9:45            | Integrated Systems                                                    | Fred Brockman    | Pacific Northwest    |  |  |
|                      |                                                                       |                  | National Laboratory  |  |  |
|                      |                                                                       | •                |                      |  |  |
| 9:45-10:00           | Break                                                                 |                  |                      |  |  |
|                      |                                                                       |                  |                      |  |  |
| 10:00-10:05          | Key issues to NABIR                                                   | Fred Brockman    | Pacific Northwest    |  |  |
| 10.05.10.45          |                                                                       |                  | National Laboratory  |  |  |
| 10:05–10:45          | Nucleic acid extraction and purification from environmental           | Andy Ogram /     | University of        |  |  |
|                      | matrices                                                              | Richard Hurt     | Florida/Oak Ridge    |  |  |
| 10.45 11.55          | Specificity consitivity quantitation and data processing              | Jizhong Zhou     | Oak Bidga National   |  |  |
| 10.45-11.55          | specificity, sensitivity, quantitation and data processing            | Jizhong Zhou     | Laboratory           |  |  |
| 11:55-12:35          | Cost analysis service center and collaboration                        | Darrell Chandler | University of Idaho/ |  |  |
| 11.00 12.00          | cost analysis, service conter and condoration                         | Durren Chundren  | Pacific Northwest    |  |  |
|                      |                                                                       |                  | National Laboratory  |  |  |
| 12:35-               | Adjourn                                                               | Jizhong Zhou     | Oak Ridge National   |  |  |
|                      | ·                                                                     |                  | Laboratory           |  |  |

# Appendix B: List of Participants

| Name               | Address                                                                                                                                | phone                 | fax          | email                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|---------------------------------|
| Tamar Barkay       | Rutgers University<br>Dept. of Biochemistry and<br>Microbiology<br>76 Lipman Drive<br>New Brunswick, NJ 08901                          | 732-932-9763<br>x 333 | 732-932-8965 | <u>barkay@aesop.rutgers.edu</u> |
| Kenneth Beattie    | Oak Ridge National Laboratory<br>P.O. Box 2008<br>Oak Ridge, TN 37831-6123                                                             | 865-574-7912          | 865-574-6210 | <u>beattiekl@ornl.gov</u>       |
| David Blehert      | NIH/NIDCR<br>Building 30, Rm. 312<br>30 Convent Drive<br>MSC 4350<br>Bethesda, MD 20892                                                | 301-496-2088          | 301-402-0396 | david.blehert@nih.gov           |
| Fred Brockman      | Pacific Northwest National Lab<br>P.O. Box 999, MS P7-50<br>Richland, WA 99352                                                         | 509-376-1252          | 509-376-1321 | fred.brockman@pnl.gov           |
| Darrell Chandler   | Environmental Microbiology<br>Battelle PNNL<br>900 Battelle Blvd.<br>P.O. Box 999<br>MS P7-50<br>Richland, WA 99352                    | 509-376-8644          | 509-376-1321 | dp.chandler@pnl.gov             |
| Linda Chrisey      | Office of Naval Research<br>800 N. Quincy St.<br>Arlington, VA                                                                         | 703-696-4504          | 703-696-1212 | chrisel@onr.navy.mil            |
| C. H. Winston Chen | Oak Ridge National Lab<br>MS 6378<br>Building 5500<br>Oak Ridge, TN 37831                                                              | 423-574-5895          | 423-576-2115 | <u>chenc@ornl.gov</u>           |
| Edward DeLong      | MBARI<br>7700 Sandholdt Road<br>Box 628<br>Moss Landing, CA 95039                                                                      | 831-775-1843          | 831-775-1645 | delong@mbari.org                |
| Daniel Drell       | DOE/OBER/SC-72<br>19901 Germantown Rd.<br>Germantown, MD 20874-1290                                                                    | 301-903-4742          | 301-903-8521 | daniel.drell@science.doe.gov    |
| John J. Dunn       | Brookhaven National Lab<br>Biology Dept.<br>Upton, NY 11973                                                                            | 631-344-3012          | 631-344-3407 | jdunn@bnl.gov                   |
| Nancy DuTeau       | Center for Env. Toxicology and<br>Technology<br>Colorado State University<br>Department of Microbiology<br>Fort Collins, CO 80523-1677 | 970-491-8505          | 970-491-1815 | nduteau@cvmbs.colostate.edu     |
| Mike Faugh         | Cartesian Technologies, Inc.<br>1906 E. Highway 54, Suite 200A                                                                         | 919-572-5888          | 919-572-6889 | mfaugh@cartesiantech.com        |

| Name                  | Address                                                                                                                         | phone                | fax          | email                               |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------------------------------|
|                       | Durham, NC 27713                                                                                                                |                      |              |                                     |
| Robert S. Foote       | Oak Ridge National Laboratory<br>P.O. Box 2008<br>Oak Ridge, TN 37831-8242                                                      | 423-576-2032         | 423-574-8363 | <u>ft1@ornl.gov</u>                 |
| Stephen J. Giovannoni | Department of Microbiology<br>248 Nash Hall<br>Oregon State University<br>Corvallis, OR 97331-3804                              | 541-737-1835         | 541-737-0496 | giovanns@bcc.orst.edu               |
| John Heidelberg       | TIGR<br>9712 Medical Center Drive<br>Rockville, MD 20850                                                                        | 301-315-2528         | 301-838-0208 | jheidel@tigr.org                    |
| John Houghton         | DOE HQ<br>19901 Germantown Road<br>Germantown, MD 20874                                                                         | 301-903-8288         | 301-903-8519 | john.houghton@science.doe.gov       |
| Richard Hurt          | ORNL<br>Building 1505, MS 6038<br>Oak Ridge, TN 37831-6038                                                                      | 423-574-7379         | 423-576-8646 | <u>vnr@ornl.gov</u>                 |
| Glenn Johnson         | Air Force Research Laboratory<br>139 Barnes Drive - Suite 2<br>Tyndall AFB, FL 32404                                            | 850-283-6223         | 850-283-6090 | <u>glenn.johnson@tyndall.af.mil</u> |
| Ernie Kawasaki        | Director of Biological Applications<br>GSI Lumonics<br>500 Arsenal Street<br>Watertown, MA 02472-2888                           | 617-924-1010<br>x568 | 617-926-4093 | kawasakie@gsilumonics.com           |
| Cynthia A. Liebert    | University of Georgia<br>527 Biolog. Sci. Bldg.<br>Microbiology Department<br>Athens, GA 30602-2605                             | 706-542-2664         | 706-542-6140 | cliebert@arches.uga.edu             |
| Derek R. Lovley       | Department of Microbiology<br>Morrill Science Center IV<br>University of Massachusetts<br>Amherst, MA 01003                     | 413-545-9651         | 413-545-1578 | dlovley@microbio.umass.edu          |
| Mary Lowe             | Loyola College in Maryland<br>Physics Department<br>4501 N. Charles Street<br>Baltimore, MD 21210                               | 410-617-2709         | 410-617-2646 | mll@vax.loyola.edu                  |
| Terence L. Marsh      | Michigan State University<br>41 Giltner Hall<br>East Lansing, MI 48824                                                          | 517-432-1365         | 517-432-3770 | MARSHT@pilot.msu.edu                |
| Alison E. Murray      | Center for Microbial Ecology<br>540 Plant and Soil Science Building<br>Michigan State University<br>East Lansing, MI 48824-1325 | 517-353-7858         | 517-353-2917 | murraya@pilot.msu.edu               |
| Andrew V. Ogram       | Soil and Water Science Department<br>2169 McCarty Hall<br>University of Florida<br>Gainesville, FL 32611-0290                   | 352-932-5790         | 352-392-3902 | avo@gnv.ifas.ufl.edu                |

| Name               | Address                                                                                                                                                                    | phone                 | fax          | email                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|--------------------------------|
| Anna Palmisano     | DOE HQ<br>19901 Germantown Road<br>Germantown, MD 20874                                                                                                                    | 301-903-9963          | 301-903-8519 | anna.palmisano@science.doe.gov |
| Anthony V. Palumbo | Oak Ridge National Laboratory<br>Bldg. 1505, MS 6038<br>Oak Ridge, TN 37831-6038                                                                                           | 423-576-8002          | 423-576-8646 | <u>palumboav@ornl.gov</u>      |
| Sridhae Viamajala  | Chemical Engineering Department<br>P.O. Box 642710<br>Washington State University<br>Pullman, WA 99164-2710                                                                | 509-335-6239          | 509-335-4806 | sridhar@mail.wsu.edu           |
| Flynn Picardal     | Indiana University<br>SPEA-Room 231<br>Bloomington, IN 47405                                                                                                               | 812-855-0732          | 812-855-7802 | picardal@indiana.edu           |
| David Scala        | Rutgers University<br>Chemical And Biochemical<br>Engineering<br>Foran Hall, Room 312B<br>71 Dudley Road<br>New Brunswick, NJ 08901                                        | 732-932-8165 x<br>315 | 732-932-0312 | djscala@rci.rutgers.edu        |
| Mark Schena        | TeleChem International, Inc.<br>524 E. Weddell Drive, Suite 3<br>Sunnyvale, CA 94089-2115                                                                                  | 408-744-1331          | 408-744-1711 | <u>mark@arrayit.com</u>        |
| Egbert Schwartz    | University of California, Berkeley<br>151 Hilgard Hall<br>Berkeley, CA 94720-3110                                                                                          | 510-543-2402          | 510-543-5098 | egbert@nature.berkeley.edu     |
| Barth F. Smets     | University of Connecticut<br>261 Glenbrook Rd., U-37<br>Storrs, CT 06269                                                                                                   | 860-486-2270          | 860-486-2298 | barth.smets@uconn.edu          |
| Jim Spain          | U.S. Air Force<br>AFRL/MLQR<br>139 Barnes Drive<br>Tyndall AFB, FL 32403                                                                                                   | 850-283-6058          | 850-283-6090 | jim.spain@tyndall.af.mil       |
| Alexander Spiro    | Loyola College in Maryland<br>4501 North Charles Street<br>Bellimore, MD 21210                                                                                             | 410-617-2861          | 410-617-2646 | <u>spiro@newton.loyola.edu</u> |
| John Kelley        | Environmental Health Engineering<br>Department of Civil Engineering<br>Technological Institute<br>Northwestern University<br>2145 Sheridan Road<br>Evanston, IL 60208-3109 | 847-467-1074          | 847-491-4011 | j-kelly5@nwu.edu               |
| Anne O. Summers    | University of Georgia<br>Dept. of Microbiology<br>Room 263A, Biological Sciences<br>Athens, GA 30602-2605                                                                  | 706-542-2669          | 706-542-6140 | summers@uga.edu                |
| James M. Tiedje    | Center for Microbial Ecology<br>Michigan State University                                                                                                                  | 517-353-9021          | 517-353-2917 | TIEDJEJ@pilot.msu.edu          |

| Name          | Address                                                                                                 | phone        | fax          | email                        |
|---------------|---------------------------------------------------------------------------------------------------------|--------------|--------------|------------------------------|
|               | 540 Plant & Soil Science Bldg.<br>East Lansing, MI 48824-1325                                           |              |              |                              |
| Marty Voskuil | Stanford University<br>Howard Hughes Medical Institute<br>Palo Alto, Ca 94305                           | 650-723-8158 | 650-723-1399 | <u>mivoskuil@hotmail.com</u> |
| Judy D. Wall  | Biochemistry Department<br>University of Missouri-Columbia<br>117 Schweitzer Hall<br>Columbus, MO 65211 | 573-882-8726 | 573-882-5635 | wallj@missouri.edu           |
| Jizhong Zhou  | ORNL<br>Building 1505, MS 6038<br>Oak Ridge, TN 37831-6038                                              | 423-576-7544 | 423-576-8646 | <u>ytz@ornl.gov</u>          |