In situ Metal Sequestration by Microbially Mediated Precipitation of Calcium Carbonate

R.W. Smith, D.M. Cosgrove, & J.L. Taylor University of Idaho

Y. Fujita, F.S. Colwell, & T.L. McLing Idaho National Laboratory

Research sponsored by US Department of Energy, Environmental Management Science Program Project Number 87016

Coupled Processes and In Situ Stabilization

- *In situ* stabilization results from a transient perturbation of the biogeochemical environment
 - Application of treatment
 - Remobilization of contaminants from less stable form
 - Sequestration in more stable form
- Stabilization *must* persist for decades to centuries after active treatment ends
 - Biogeochemical environment will revert to pretreatment background conditions
 - Coupling between the rates of local biogeochemical processes and the global fluxes

Proposed Stabilization Strategy

 Manipulate the kinetics of calcite precipitation in an aquifer in order to increase the rate of coprecipitation of divalent metals (eg. ⁹⁰Sr⁺²⁺, ⁶⁰Co²⁺, Pb²⁺, Cd²⁺) from the aqueous phase.

 $(1-\chi)Ca^{2+} + \chi Me^{2+} + 2HCO_3^{-} \rightarrow Ca_{(1-\chi)}Me_{\chi}CO_3 + CO_2 + H_2O$

 Co-precipitation of metals in calcite at arid western sites is compatible with the long term subsurface biogeochemistry

Divalent Metals and Radionuclides are Common at DOE sites

Riley and Zachara 1992

⁹⁰Strontium Contamination

INL groundwater, perched water (INTEC)

- Up to 84 pCi L⁻¹ in a 1.6 km² groundwater plume
- Up to 320,000 pCi L⁻¹ in perched water
- 18,000 Ci released

Hanford soils, groundwater (100N)

- Est in-ground inventory of 75 to 89 Ci
- Groundwater levels up to 6000 pCi L⁻¹

EPA Regulatory Limits for ⁹⁰Sr in drinking water: 8 pCi L⁻¹

Contaminant inventories are largely associated with the solid media, not the water

Results to Date (1)

 Demonstrated in laboratory and field the linkage between urea hydrolysis and calcite

precipitation. University of Idaho

Results to Date (2)

- In [Ca²⁺]/[Ca²⁺]₀
- Observed that Sr is incorporated into calcite precipitated by urea hydrolyzers, with higher distribution coefficient than in abiotic systems

Results to Date (3)

- Determined that urea hydrolyzers are ubiquitous in the SRPA.
- Developed PCR primers specific to bacterial urease subunit C.
- Developed ¹⁴C tracer technique to estimate *in situ* ureolysis rate.

Data from single well push-pull experiment (4 reps from each time point). A – pre urea and molasses addition; B – during addition; C – post addition. The PCR data suggests that following urea and molasses addition the urease gene target was detected more consistently and in greater abundance.

Model Aquifer System

	mg L ⁻¹		$mg L^{-1}$
Ca ²⁺	70.1	Na⁺	25.8
Mg ²⁺	10.9	K^{+}	4.0
HCO ₃ ⁻ NO ₃ ⁻	69.8 5.2	Cl [⁻] SO₄ ²⁻	124 43.0
pH T (°C)	8.15 14	¹ CEC ² Kd _{Sr}	1.5 5.0
1 (meq 100 g ⁻¹) 2 (mL g ⁻¹)			

UniversityofIdaho

- 6.67 liter total volume (15% porosity)
- 1 liter (1 kg) of water
- 5.67 liter (15.3 kg) of geomedia (CEC only reactivity)
- 2.70 kg liter⁻¹ (grain density)
 2.29 kg liter⁻¹ (bulk density)
- React 2 mmoles aqueous urea
- Kinetics
 - 1st order for urea hydrolysis
 - 2nd order chemical affinity for calcite precipitation
- Geochemist's Workbench simulations

Single Well Field Experiment

- First order urea hydrolysis rate constant
 - 1.3E-07 sec⁻¹
- Field base retardation factor for NH₄⁺
 - **2**0

Kinetic Model Calcite Precipitation

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

$$\frac{d[calcite]}{dt} = k_{calcite} (S-1)^2$$

$$S = \frac{Q}{K} = \frac{a_{Ca^{2+}}a_{CO_3^{2-}}}{K_{eq}}$$

NETPATH model of McLing (1994) suggests that ~0.3 mmole (net) of calcite precipitate per liter of groundwater as it travels across the INEEL site (~50 years)

 $S \rightarrow 2.2$

Batch System Calculations (No Transport)

- pH and HCO₃⁻ initially rises due to urea hydrolysis, then decrease as calcite precipitates.
- Ca²⁺ initially rises due to exchange with NH₄⁺, then decrease as calcite precipitates.

University of Idaho

Batch System Calculations (No Transport)

- Hydrolysis of 2 mmol urea results in precipitation of almost 2 mmole of calcite.
- Q/K rises rapidly as urea hydrolyzes faster than calcite precipitates, Q/K falls as the two rates become
 CALVERSIGN FIDANO

Reactive Transport (6 month injection, 1-D, 730 m, 1 pore volume year⁻¹)

- High pH moves through system. Near ambient pH values return in less than 18 months
- High [Ca²⁺] moves through system in early times as NH₄⁺ exchanges for Ca²⁺. During later times low [Ca²⁺] moves through system as Ca²⁺ exchanges for NH₄⁺ University of Idaho

Reactive Transport (6 month injection, 1-D, 730 m, 1 pore volume year⁻¹)

- Calcite precipitates through the entire regions and is essentially complete within 2 years.
- Q/K is elevated (> 30) during early times and slightly depressed (but > 1) during later times. This condition persists until NH₄⁺ is swept from the system (decades).

Simulation – Calcite and Urea Kinetics

Simulation – Strontium Distribution

Summary of Simulations

- Urea hydrolysis can be used to manipulate *in situ* biogeochemistry and facilitate calcite precipitation
- The system is rock dominated the solutions changes are small in comparison to the changes in the aquifer host rock
- pH and HCO₃⁻ initially rise due to urea hydrolysis, then decrease as calcite precipitates
- Ca²⁺ initially rises due to exchange with NH₄⁺, then decreases as calcite precipitates

Summary of Simulations

- Hydrolysis of urea results in precipitation of almost equivalent molar amounts of calcite
- Initially the urea hydrolysis rate (R_U) is faster than the calcite precipitation rate (R_C) , followed by a brief period over which $R_C > R_U$, and finally a long period over which $R_C \sim R_U$
- Small, but significant amounts of strontium are incorporated into the precipitated calcite
- Multiple treatments will be required to fully sequester strontium-90

Future Work

- Drilling 5-spot well field at INL Vadose Zone Research Park
- Multi-well experiments to assess field rates

