Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress S. D. Brown¹, K. Chourey¹, M. Thompson^{2,3}, N. C. VerBerkmoes^{2,3}, R. L. Hettich², S. Seal⁴, S. Deshpande⁴, J. Zhou¹, and D. K. Thompson¹ (PI)

¹Environmental Sciences Division and ²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; ³Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory; ⁴Advanced Materials Processing and Analysis Center, University of Central Florida

5 30 60 90

ABSTRACT

The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K,CrO,) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K2CrO4. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to ~240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both LCQ and LTQ instruments used). With LTQ, we were able to substantially increase proteome coverage by at least two-fold compared to LCQ analysis. These studies provide important insights into cellular chromium tolerance. Future research will focus on the structural and regulatory genes implicated in Cr(VI) reduction and detoxification.

METHODS

Bacterial Growth Conditions and Total RNA Isolation. For time-series microarray experiments, batch cultures of S. oneidensis MR-1 were grown to mid-exponential phase (OD 600 0.5) under aerobic conditions in LB medium, followed by the addition of 2 M K_2CrO4 to a final concentration of 1 mM. Untreated control cultures were grown in parallel with treated cultures. Control and treated cells were harvested for total cellular RNA extraction at 5, 30, 60, and 90 min post-K2CrO4 addition using the TRIzol reagen

Microarray Data Analysis. Array hybridization signals were quantified using ImaGene version 5.5 (Biodiscovery, Inc.), followed by data transformation and normalization using the trimmed geometric mean method in GeneSite Light. ArrayStatTM (Imaging Research, Inc.) was used to determine the common error, remove outliers, and determine statistical significance. Genes exhibiting significant (p<0.05) changes in expression were further analyzed using the program Hierarchical Clustering Explorer version 3.0.

Chromate Reduction Assays and Metal Analysis. Residual chromate was measured using the 1,5-diphenylcarbazide method (Park et al., 2000) at 540 nm. The effect of the growth medium (LB) on potassium chromate was examined using a Varian (Cary-EE) UV-Visible Spectrophotometer. UV-Vis spectra were collected for K₂CrO₄ in LB at 5, 10, 30, 60, 90 min, and 24 h with reference to K₂CrO₄ in DI water. The surface chemistry of chromate in LB was characterized using a PHI 5400 X-ray electron spectrometer at a base pressure of 10-10 Torr. Control samples of Cr⁺⁶ and Cr⁺³ were run as standards

Proteomic Analysis. For all comparative studies, equal quantities of WT and Cr-treated cell lysates were digested with sequencing-grade trypsin, desalted, and concentrated. All samples were run in duplicated by Ur(LC-ES-MS/MS on a quadrupole ion trap mass spectrometer (Thermo Finnigan LC) pand a single time on a linear ion trap mass spectrometer (Thermo Finnigan LTQ). All datasets were searched with SEQUEST, filtered and sorted with DTASelect (minimum Xcorrs of 1.8 (+1), 2.5 (+2), 3.5 (+3)], and compared with Contrast. Differentially expressed proteins were extracted based on differences of 30% sequence coverage and/or four unique peptides between the WT and chromate-treated samples.

RESULTS

FIG 3. Dose-response growth curves describing the toxicity of potassium chromate (K_2CrO_2) for S. oneidennii MR-1. (The minimal inhibitory concentration (MIC) of K_2CrO_2 for MR-1 determined in LB broth under aerobic growth could al $3^{1/2}$ claret 48. (b) Growth curves of BRC1 ever 48 in in Hardium containing the following find concentrations (of K_2CrO_3 were measured using a Bioscreen C reader: $0(\gamma)$ Groß ($\gamma)$ S2 ($\gamma)$ 5.25 ($\gamma)$; 5.25 (γ hromate (K₂CrO₄) for *S. oneidensis* MR-1. (A) ned in LB broth under aerobic growth conditio

OAK RIDGE NATIONAL LABORATORY

FIG 4. Chromate (K₂CrO₄) remaining in uninoculated LB medium and in mid-log phase, aerobic cultures of *S. oneidensi*: MR-1.

ACKNOWLEDGMENTS

We thank Liyon Wu, Xueduan Liu, and Tingfen Yan for construction of whole-genome microarrays for *S. oncidensis* MR-1. We thank Xin-Feng Wan for structure prediction of S03885 and hydropholicity plots, and Manesh Shah for proteome bindiformatic analyses. This research was supported by a grant from the U.S. Bopartament of Energy Natural and Accelerated Bioremediation Research Program OAK (sing Valional Laboratory is managed by University of Tenness-Battlei LLC for the Department of Energy Natural and Accelerated Def Accelerated Program OAK (sing Valional Laboratory is managed by University of Tenness-Battlei LLC for the Department of Energy Natural and Accelerated

	response to potassium chromate str	ess.			
				Mean (K2CrO4/control)a	
Gene	Gene Product	t (min) ^b =	5	30	60
so3032	siderophore biosynthesis protein, putative		5	11	16
so3033	ferric alcaligin siderophore receptor		3	12	16
so3062	hypothetical protein		4	10	13
so3585	azoreductase, putative		6	61	28
so3586	glyoxalase family protein		4	26	16
so3587	hypothetical protein		4	18	10
so3667	conserved hypothetical protein		15	26	24
\$03668	conserved hypothetical protein		12	15	16
so3669	heme transport protein		16	17	20
so3670	TonB1 protein		10	16	25
so3671	TonB system transport protein ExbB1		13	10	16
so3672	TonB system transport protein ExbD1		15	15	23
so3673	hemin ABC transporter, periplasmic hemin-binding pro	otein	12	14	18
so3674	hemin ABC transporter, permease protein		14	15	17
\$03675	hemin ABC transporter, ATP-binding protein		27	17	23
so3914	TonB-dependent receptor, putative		7	8	11

TARLE 1. Genes displaying high induction levels in temporal expression in

ion (fold induction) is presented as the mean ratio of the fluorescence intensity of K-CrO.-exposed cells to Relative gene express "Time in minutes at which cells were harvested for RNA isolation following addition of 1 mMK-CrO, to the experimental cult

TABLE 2. Protein Abundance Profiles for Highly Up-Regulated Genes Using LCO vs. LTO

	45 min post exposure				90 min post exposure				
Gene	Con_LCQ	Con_LTQ	Cr_LCQ	Cr_LTQ	Con_LCQ	Con_LTQ	Cr_LCQ	Cr_LTQ	
SO3032	6.5	8.5	9.3	22.3	0	5.7	14.8	31.4	
SO3033	20.7	38	27.4	52.6	6.9	12.1	43.6	57.6	
SO3062	0	0	0	0	0	0	0	0	
SO3585	0	0	22.1	43.1	0	0	27.5	20.1	
SO3586	0	0	0	38.4	0	0	27.5	60.1	
SO3587	0	0	0	26.9	0	28.2	0	17.3	
SO3667	10.3	23.8	83.2	96.8	0	0	69.7	91.9	
SO3668	0	0	0	28	0	0	0	0	
SO3669	3.4	30.7	67.7	74	0	9.3	71	71.6	
SO3670	0	0	0	18.6	0	0	12	13.5	
SO3671	0	18.1	18.1	18.1	0	0	18.1	20.4	
SO3672	0	0	0	0	0	0	0	0	
SO3673	0	9.5	57.1	65.3	0	0	62.8	63.1	
SO3674	0	0	0	0	0	0	0	0	
SO3675	0	24.3	40.2	62.5	0	0	53	72.9	
000000	10.1					10.0	** *	10.1	

FIG. 5. Complete linkage clustering analysis of 910 *S. oneidensis* MR-1 genes exhibiting altered mRNA expression levels in response to 1 mM K₂CrO₂ exposure over time. Transcriptional profiles are shown at 5, 30, 60, and 90 min post-K₂CrO₄ shock. Individual genes are represented by a single row and each exposure time point is prepresented by a single column. Ref represents the level of inductions green

TABLE 3. Summary of Proteome Analysis

	1.4.1	No. Proteins Identified	No. Proteins Identified	Avg. Sequence
Condition	Instrument	1 pep®	2 pep ^a	Coverage (%)*
Control 1	LCQ	1318	894	28.66
45 min shock	LCQ	1238	816	31.77
Control 2	LCQ	1368	959	31.63
90 min shock	LCQ	1267	856	31.84
Control 1	LTQ	2294	1665	32.60
45 min shock	LTQ	2288	1723	33.28
Control 2	LTQ	2308	1751	33.14
90 min shock	LTQ	2291	1709	32.79
TOTAL		3015	2177	

LCQ: Thermo Finnigan ES-quadrupole ion trap LTQ: Thermo Finnigan ES-linear ion trap

^{*}Identified with at least 1 peptide per protein. ^{*}Identified with at least 2 peptides per protein. ^{*}Average sequence coverage per protein at the 2 peptide level

REFERENCES

Ackerley, D.F., C.F. Gonzalez, C.H. Park, R. Blake II, M. Keyhan, and A. Matin. 2004. Chromate reducing properties of s Microbiol. 70:873-882.

Mitaku, S., T. Hirokawa, and T. Tsuii, 2002, Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18:608-616.

Park, C.H., C.F. Gonzalez, D.F. Ackerley, M. Keyhan, and A. Matin, 2002. Molecular engineering of Soluble bacterial proteins with chromate reductase activity, p. 103-111. In REE Hinche et al. (ed.), Remediation and beneficial reuse of contaminated sediments. Batelle Press, Columbus, Ohio.

Park, C.H., M. Keyhan, B. Wielinga, S. Fendorf, and A. Matin. 2000. Purification to homogeneity and characterization of a novel *Pseudomonas putida* chromate reductase. *Appl. Environ. Microbiol.* 66:1788 1795

> Deletion mutants defective in the structural gene so3585 and a DNA-binding response regulator have been created for strain MR-1 and are currently being characterized. This work has revealed other key gene targets for mutagenesis. > We are in the process of investigating the possibility that SO3585, SO3586, and SO3587 form a protein complex anchored in the

"N D - Similiant alammant not detected

90

cytoplasmic membrane (by SO3587) that is involved in detoxification.

10757-0 679701 679701 LEGE STREEVARALSE LAPSSLALKIV-EIGDLPLYMEDIE----AE 5 ChrR YieF S03585 ChrR YieF S03585 12-FETURERREEIRSIDAULFYTHEIMSUSFULLKAMLUSUURFIDUORFI SECREMPELACEVADADALILITEVUORAJULIVUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFI SECREMPELACEVADADALILITEVUORAJULIVUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFIDUORFI ChrR YieF 903585 ISNUV 1GGARC (YHLR------(VCSGI SGAYPI VEVKNNALKINIS ChrR YieF LFNLHQYAQALAPIRORHIHOPYPROQETCYGH 204

FIG. 6. Amino acid sequence alignment of *Pseudomonas putida* ChrR, *E. coli* YieF, and *S. oneidensis* SO3585. Asterisks indicate identical residues, colons indicate residues with a high level of similarity. SO3585. Asteriskis indicate identical residues, colons indicate resultues with a napa tevet ou summary and periods indicate residues with a lower level of similarity. The characteristic signature of the NADH, dh? family of protein is bowed. Clustal W alignment indicated that SO3585 shared approx. 28% sequence identity with ChrR and YieF, two soluble flavporteins that possess chromate sequence identity with ChrR and YieF, two soluble flavopro ctase activity (Ackerley et al., 2004; Park et al., 2000, 2002).

CONCLUSIONS & FUTURE RESEARCH

> Global temporal alterations in the transcriptome and proteome of S. oneidensis MR-1 upon 1 mM potassium chromate exposure were determined in order to understand the cellular response to acute chromate stress. Genes and their corresponding protein products involved in iron and sulfate transport, cellular detoxification, and DNA repair were up-regulated in response to acute Cr(VI) exposure. Transcriptome profiles generated from cells adapted to 0.3 mM K2CrO4 (for 24 h) differed markedly from those characterizing cells exposed to acute Cr(VI) stress without adaptation (data not shown).

- > Many of the proteins found to be up-regulated at the transcript level were found to have reproducible dramatic differences in % sequence coverage, # of unique peptides, and spectral count (all relative indicators of protein abundance). The new linear ion traps allow for a much greater detailed analysis of the proteome with ~2-3 times the proteome coverage allowing for comparisons of low abundance proteins not identified by conventional quadrupole ion traps. Replicate analyses of proteome samples with the linear ion trap are on-going.
- > Chemical analysis indicated that Cr remains predominantly in the +6 oxidation state in LB medium (no cells) over the time course
- > MR-1 orthologs of known members of the LexA regulon (recX, recA, recN, and dinP) of E. coli were induced in response to Cr(VI) exposure. > Molecular link between Cr exposure and iron/sulfate transport is being examined further.