NABIR PI Meeting Breakout Session: BIOREMEDIATION OF TECHNETIUM

Technetium

▶ ⁹⁹Tc is a fission product

• Fission yield of 6.1% from ²³⁵U and 5.9% from ²³⁹Pu

► 21 known isotopes ⁹⁰Tc – ¹¹⁰Tc

► 3 isotopes have long half-lives

•
$${}^{98}\text{Tc}(t_{1/2}) = 4.2 \text{ x } 10^6 \text{ y}$$

•
$${}^{99}\text{Tc}(t_{1/2}) = 2.14 \text{ x } 10^5 \text{ y }^*$$

Groundwater Contamination Plumes at Hanford

Area of Contaminant Plumes at Levels Above Drinking Water Standards (square kilometers)			
Constituent (drinking water standard)	Fiscal Year 2000	Fiscal Year 2001	Fiscal Year 2002
Carbon tetrachloride (5 µg/L)	9.8	9.8	9.9
Chromium (100 µg/L)	2.8	2.8	2.6
lodine-129 (1 pCi/L)	89.6	79 .5 ^(a)	79.4
Nitrate (45 mg/L)	36.3	38.4	35.7
Strontium-90 (8 pCi/L)	2.8	2.7	2.7
Technetium-99 (900 pCi/L)	2.3	2.4	2.3
Trichloroethene (5 µg/L)	4.2	4.3	3.4 [0]
Tritium (20,000 pCi/L)	152	151	142
Uranium (20/30 µg/L)	2.0	1.6	1.5
Combined Plumes	210	208	196

(a) These large changes in estimates of plume area are caused by changing interpretations of the data and changes to the monitoring network. Changes in actual plume size are usually more gradual.

Active Areas of Groundwater Remediation at Hanford

Effects of Pump and Treat on ⁹⁹Tc at Hanford's 224-U

Oxidation and Reduction

 $aA + bB + ne^{-} = cC + dD$

Oxidized state Reduced state

 ΔG° , E°, K° Reactants and products at standard state E°(volts) = $\Delta G_r^{\circ}/_{nF}$

 $Eh(volts) = E^{\circ} + \frac{RT}{nF} In \frac{(A)^{a}(B)^{b}}{(C)^{c}(D)^{d}}$

Tc Redox Chemistry

Tc(VII) and Tc(IV) are most stable valence species

1.
$$TcO_4^- + 4H^+ + 3e^- = TcO_2 \cdot xH_2O_{(s)} + (2-x)H_2O_{(l)}$$

 $E^\circ (298.15K) = 0.746 \pm 0.012 V$
 $log_{10}K^\circ = 37.8$
Formulated between reference species of each oxidation

2.
$$TcO_4^- + 4H^+ + 3e^- = TcO(OH)_{2(aq)} + H_2O_{(l)}$$

 $E^\circ = 0.579 \text{ V}, \log_{10}K^\circ = 29.4$
 $TcO(OH)_2$ is the major aqueous species in non-complexing solutions
between pH 2 and 10

3.
$$TcO_4^- + 3Fe^{2+}_{(aq)} = TcO(OH)_{2(aq)} + Fe(OH)_{3(s)} + 5H^+ \log_{10}K^\circ = -21.8$$

@ pH 7 $Fe^{2+} = 10^{-3} \text{ mol/L}, \text{ Tc(VII)} = 10^{-12.2} \text{ mol/L}$ $Fe^{2+} = 10^{-6} \text{ mol/L}, \text{ Tc(VII)} = 10^{-3.2} \text{ mol/L}$

Solubility of TcO₂•nH₂O

Stability Diagram for TcO₄-/TcO₂•nH₂O in Presence of CO_{2(g)}

Stability Diagram for UO₂²⁺/UO_{2(c)} in Presence of CO_{2(g)}

Redox Ladder at pH = 7 and 25° C [Aqueous species at equimolar concentrations, others as noted]

TcO₄⁻ and NaNO₃ Beneath Leaked Hanford HLW Tank SX-108

TcO₄ Co-Contaminants Associated with Hanford REDOX Waste

Office of Science

Laboratory Studies of Tc Reduction and Oxidation

John Zachara, Jim Fredrickson, Jim McKinley, Ravi Kukkadapu, Dave Kennedy, Andy Plymale, and Steve Smith

Pacific Northwest National Laboratory, Richland, WA

Laboratory Studies of Tc Reduction and Oxidation

Experimental Issues

Reactivity of biogenic Fe(II) for Tc(VII) reduction

- Reactive forms and their properties and concentration terms
- Kinetic parameters and empirical correlations
- Nature of reduction products
- Biogeochemical context and microbiologic relationships

Factors controlling oxidation rate

- Intrinsic oxidation kinetics
- Mineral residence, spatial location, and mass transfer effects
- In-situ features controlling reaction rate
- Bacterial oxidation

Effects of Chemical Treatments on the Distribution of Fe in the FRC Background Sediment

Distribution of Fe in the FRC Background Sediment

Goethite in the Background FRC Sediment

Reduction and Oxidation Behavior of TcO₄and Biogenic TcO₂•nH₂O in FRC Sediment

U.S. DEPARTMENT OF ENERGY

U.S. Department of Energy 19

X-ray Absorption, XANES Spectra for Tc(VII) and Tc(IV) Compounds and Bioreduced Sediments Reacted with TcO₄-

Synchrotron X-ray Microscopy of Bioreduced FRC Sediment that was Spiked with TcO₄-

Effect of Fe(II) on TcO₄⁻ Reduction in HAH Extracted FRC Sediment

Effect of Fe(II) on TcO₄⁻ Reduction in DCB/0.5 N HCI Extracted FRC Sediment

Effect of Fe(II) on TcO₄⁻ Reduction in the DCB Extracted FRC Sediment

TcO₄⁻ Reduction by Bioreduced, Pasteurized Eatontown Hematite Sediment

First Order Rate Dependency of TcO₄-Reduction on Biogenic Fe(II) Concentration

Synchrotron X-ray Microscopy of Bioreduced Hanford/Ringold Sediment that was Spiked with TcO₄⁻

Interlaminar Fe & Mn oxides

Fe & Mn oxide grain coatings

Influence of NO₃⁻ on TcO₄⁻ Reduction by Bioreduced, Pasteurized FRC Sediment

Lability of Biogenic Fe(II) in FRC Sediment to Reaction with Environmental Oxidants

Oxidation of Biogenic of TcO₂•nH₂O in Single Phase Suspensions and in FRC Sediment

Findings to Date – Tc(VII) Reduction

- Biogenic Fe(II) is strongly sorbed by different sediments
- Quantifying Fe(II) speciation is difficult
- Biogenic Fe(II) is a strong reductant for TcO₄⁻
- Redox properties of sorbed Fe(II) wrt Tc(VII) reduction are difficult to rigorously define
- Fe(II) surface precipitates appear as the strongest Tc(VII) reductants
- Similarities and differences in the reactivity of sediment Fe(II) for Tc(VII)

Findings to Date – Tc(IV) Oxidation

- The relative rate of TcO₂•nH₂O oxidation is slower than Tc(VII) reduction
- Presumptive evidence from oxidation behavior that Fe(II) and Tc(IV) are closely associated
 - λ Chemical/mineralogic
 - λ Physical
- Fe(II) oxidizes more rapidly than Tc(IV), but oxidation is incomplete
- ► Fe(III) oxidation products influence Tc(IV) oxidation
 - λ Intragrain, intrapore mass transfer effects
 - λ Fixing Fe(II)/Tc(IV) proximity

Areas for Future Research

- Identity of biogenic Fe(II) reductants
- Molecular association of Fe(II) and Tc(IV)
- Thermodynamic and kinetic reaction parameters for biogenic Fe(II)
- Kinetic reaction parameters for "abiotic" TcO₂•nH₂O
- Physical and chemical controls on TcO₂•nH₂O oxidation
- Linked geochemical, microbiologic, and hydrologic modeling of reductive and oxidative processes

Tentative Discussion Topics

- 1. Microbiologic uncertainties
 - Presence of suitable organisms
 - Enzymatic reduction and oxidation
 - Reactivity of periplasmic TcO₂•nH₂O
 - λ In-situ bioreduction rates and influence of co-contaminants
- 2. Geochemical and hydrologic uncertainties
 - λ Controlling factors, reaction mechanisms, and rate laws for abiotic reduction and oxidation
 - λ Identifying and quantifying solid phase reductants and oxidants
 - λ $\,$ Mass transfer and advective controls on Tc oxidation and reduction
 - λ Microbiologic evolution of physical and chemical properties

