Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

Z. He¹, Q. He¹, L. Wu¹, M.E. Clark³, J.D. Wall², Jizhong Zhou¹ and Matthew W. Fields^{1,3}

¹Oak Ridge National Laboratory, Oak Ridge, TN; ²University of Missouri, Columbia, MO; ³Miami University, Oxford, OH

Abstrac

Desulforibrio vulgaris Hildenborough has been the focus of biochemical and physiological studies in the laboratory, and the metabolic versatility of this organism has been largely recognized, particularly the reduction of sulfate, fumarate, iron, uranium and chronium. In addition, a *Desulforibrio* so, has been shown to utilize transmism as the sole electron acceptor. Du vulgaris is a d-*Proteobacterium* with a genome size of 3.6 Mb and 3584 ORFs. The whole-genome microarrays of *D. vulgaris* have been constructed using 70mer oligonucleotides. All ORFs in the genome were represented with 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes that may have cross-hybridization with other ORFs. In preparation for use of the experimental microarrays, artificial probes and targets were designed to assess specificity and sensitivity and identify optimal hybridization conditions for oligonucleotide microarrays. The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45oC to 50°C washing at 37°C and a wash time of 2.5 to 5 minutes obtained specific and strong hybridization signals. In order to evaluate the performance of the experimental microarrays, growth conditions were selected that were expected to give significant hybridization differences for different sets of genes The initial evaluations were performed using D. vulgaris cells grown at logarithmic and stationary phases. Transcriptional analysis of D. vulgaris cells sampled during logarithmic phase growth indicated that 25% of annotated ORFs were up-regulated and 3% of annotated ORFs were downregulated compared to stationary phase cells. The up-regulated genes included ORFs predicted to be involved with acyl chain biosynthesis, amino acid ABC transporter, translational initiation factors, and ribosomal proteins. In the stationary phase growth cells, the two most up-regulated ORFs (Or 0-fold) we annotated as a carboxynorspermidin decarboxylase and a 2C-methyl-D-crythritol-2,4-cyclodiphosphate (MECDP) synthase. Spermidines are polyamines that are typically abundant in rapidly dividing cells and are essential growth factors in eukaryotic organisms. Polyamines are thought to stabilize DNA by the association of the amino groups with the phosphate residues of DNA and can also enhance tRNA and ribosome stability. The MECDP synthase enzyme is essential in *Escherichia coli* and participates in the nonmevalonate pathway of isoprenoid biosynthesis, a critical pathway present in some bacteria and apicomplexans but distinct from that used by mammals. Several of the highly up-regulated ORFs were annotated as conserved hypothetical proteins. Interestingly, an ORF that was predicted to contain a flocculin repeat domain was almost 9-fold up-regulated in stationary phase cells compared to logarithmically growing cells. The flocculin domain is commonly observed in fungi, and is thought to play a role during flocculation (non-sexual aggregation of single-cell microorganisms). These preliminary results have identified possible responses of D. vulgaris cells to stationary phase growth and suggest that polyamine production as well as cell aggregation and/or extracellular polymer production are responses of D. vulgaris during stationary phase. The initial microarray results indicate that the recently produced oligonucleotide microarrays are functional. We are currently optimizing growth conditions in order to culture D. vulgaris cells in the presence of uranium(VI) and to monitor whole-genome expression levels

Construction of Whole-genome Oligonucleotide Microarrays of Desulfovibrio vulgaris Hildenborough

- · All predicted ORFs represented by 3574 oligonucleotides 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes
- · Oligonucleotide length = 70mer
- · Negative controls: 10 oligo probes for 10 human genes and 10 oligos for 10 Arabidopsis genes
- Positive controls: different amounts of genomic DNA and probes for human genes and Arabidopsis genes with mRNA spiked in samples
- · Each probe spotted in duplicate

Comparisons of Designed Probe Information for Desulfovibrio vulgaris using different programs (probe length = 70-mer)

Up-Expressed ORFs During Logarithmic Phase

ORF ID	Fold Induction	Annotation		
ORF00932	94X	Acyl Carrier Protein		
ORF00247	83X	Hypothetical protein		
ORF00933	73X	3-oxoacyl-(acyl carrier protein) reductase		
ORF02862	61X	Amino acid ABC transporter		
ORF04652	56X	Translation initiation factor IF-1		
ORF03414	55X	Hypothetical protein		
ORF05502	55X	tRNA pseudouridine synthase B		
ORF01910	53X	Hypothetical protein		
ORF02084	53X	Ribosomal protein S20		
ORF05060	53X	Oxidoreductase/iron-sulfur cluster		
ORF02652	52X	Translation initiation factor		
ORF02650	50X	RNA-binding protein		
ORF02534	45X	dnaK suppressor protein		
ORF01909	44X	Ribosomal protein S21		
ORF02917	43X	Outer membrane protein (putative)		
ORF01887	42X	Conserved hypothetical protein		
ORF01470	41X	Lipoprotein (putative)		
ORF02323	41X	Recombination Protein		
ORF04870	40X	DNA-binding response regulator		
ORF05501	40X	Ribosomal protein S15		

C 1 C

C

C

RF ID	Fold Induction	Annotation
RF05345	71X	Carboxynorspermidine decarboxylase
RF01336	67X	2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
RF03029	25X	Small heat shock protein
RF03920	25X	Phage shock protein A
RF01584	24X	Conserved hypothetical
RF05612	19X	Hypothetical protein
RF04669	19X	Conserved hypothetical protein
RF02390	15X	Chemotaxis protein
RF05613	15X	Hypothetical protein
RF00213	13X	Hypothetical protein
RF01629	13X	σ^{54} factor family
RF03769	12X	flagellar basal-body rod protein
RF04474	12X	Hypothetical protein
RF05010	12X	Conserved hypothetical protein
RF05549	11X	hmc operon protein 4
RF00550	11X	Lipoprotein (putative)
RF01137	9X	Transcriptional regulator (putative LysR family)
RF03074	9X	Flocculin repeat domain
RF03611	7X	Electron transport complex protein (putative)
RF02222	7X	Chaperonin

Up-Expressed ORFs During Stationary Phase

hypothetical or conserved hypothetical ORFs

Conclusions

· 70mer oligonucleotide probes perform in similar fashion to PCR-product based microarrays under the tested conditions

• The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45°C to 50°C, washing at 37°C and a wash time of 2.5 to 5 minutes gave specific and strong hybridization signals

· The arrays worked well when whole-genome expression patterns were compared for logarithmic and stationary phase cells

•Future work includes RT-PCR to confirm expression levels of selected ORFs

· Work is currently underway to determine the expression profiles of D. vulgaris cells when grown in the presence of sulfate-, chromium, and uranium as electron acceptors

·Identify specific systems of D. vulgaris that respond to increasing levels of nitrate and/or nitrite

•Further explore the responses of D. vulgaris cells to the stationary phase of population growth

OAR RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF EXERCT