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Introduction

Bioreductive transformations of iron (hydr)oxides are a critically

important processes controlling the fate and transport of

contaminants in soil and aquifer systems.  Heterogeneity arising

from both chemical and physical conditions will lead to various

biomineralization products of iron oxides and will additionally

alter reactions controlling the partitioning of hazardous elements

such as uranium.  We are presently exploring chemical and

mineralogical transformations within physically complex material

having a range of pore-size distribution and chemical

environments.  Here we discuss the impact of calcium on the

reactive transport of uranium and the spatial heterogeneity in

iron hydroxide mineralization and concomitant uranium

reduction along a diffusive flow path.

Heterogeneity in Biomineralization Processes

Uranyl Reductive Stabilization

Conclusions
Natural environments posses physical and chemical

heterogeneity of varying degrees.  Owing to diffusive

transport of organic carbon, biomineralization of iron

minerals will results in a complex assemblage of products

within soils and sediments, while uranium reduction will

dominate near advective-flow regimes.  Furthermore,
uranium reduction will be critically dependent on both the

aqueous and solid-phase chemistry of the environment.

Formation of a calcium-uranyl carbonato complexes retard

U(VI) reduction with total inhibition occurring when ferric

(hydr)oxides are present.
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A cross-section flow field (a) containing a low hydraulic conductivity (low-K)

zone (top) leads to the development of 2 mineral phases (magnetite and

goethite, shown in bottom two panels) during reductive transformation of iron

oxides.  The simulations is made using MIN3P (Mayer et al., 2002) and iron

biomineralization parameters revealed in Benner et al. (2002) and Hansel et al.

(2003b).  (b) Schematic diagram of the low-K region modeled in (a) illustrating

the biogenic products and impact on uranium desorption, reduction, and

transport (magnification increases from right to left and top to bottom).

Biomineralization of ferrihydrite resulting from the

dissimilatory iron reducing bacterium S. putrefaciens strain

CN32 at different advective flow velocities.  The right panel

above (from Benner et al., 2002) illustrates a mature column

and an extensive magnetite domain that is truncated with a

decrease in flow rate by a factor of 4 (left panel).  The two

columns have identical initial conditions; the single difference

is flow-rate, illustrating the importance of hydrodynamics on

biomineralization processes.

ba

Biomineralization of ferrihydrite by dissimilatory iron reducing

bacteria is driven largely by dissolved concentrations of

ferrous iron (Zachara et al., 2002; Benner et al., 2002;

Hansel et al., 2003).  A complex mineral assemblage results

that is dominated by the production of goethite and magnetite

with small quantities of green rust (unless specific ligands,

such as sulfide, are enhanced in concentration).  As a

consequence, adsorption properties will be modified

appreciably with the shift in mineralogy and the development

of reactive ferrous iron bearing phases will have important

ramifications on reductive stabilization.  While the extent of

contaminant adsorption on ferric (hydro)oxides will generally

decrease upon biomineralization (a consequence of the

crystallization and diminished surface area), the potential for

reductive stabilization will be enhanced.

A further consequence of the

biomineralization process is

the development of micro-

scale heterogeneity.  As

illustrated in the TEM images

below, the original ferrihydrite

substrate transitions into a

complex assemblage of

goethite (laths shown in “a”)

and magnetite (arrows and

upper surface in “b”).

While biomineralization of ferrihydrite will

increase geochemical heterogeneity, physical

complexity (heterogeneity) will be a dominant

factor controlling bioreductive process.  Transport

limitation and size-exclusion within structure

media (as depicted below for ORNL) will lead to

diffusive gradients dictation reaction paths.
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Scanning Electron

micrograph (c) showing S.

putrefaciens   on the

surface of a silica sand

grain.  This cell exhibits

extra cellular precipitates

of uraninite (U(IV)).

Transmission electron

micrographs of column

solids illustrate differing

bacteria-to-uranium spatial

relationships along the flow-

path. Extra-cellular

precipitation of uraninite on

the bacterial cell surface is

noted at the inlet (a). Cells in

the down-flow column

section illustrate no visible

uranium precipitation (which

is minimal, 5 mg/Kg) in

associated with the cells (b).
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Micrographs of solids from

uranium enriched (1 mg/ Kg)

zones in columns containing

calcium illustrating magnetite

(24% by wt) formation and the

concomitant retention of

uranium.
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Reduction of uranyl, U(VI), by S. putrefaciens proceeds rapidly

in batch culture.  However, imparting an important criterion on

uranyl reduction are the aqueous and solid matrices. Owing to

the formation of highly stable Ca-uranyl-carbonato complexes,

which will dominate the aqueous speciation of uranium at
circumneutral pH values (right panel), reduction can be

severely limited (Brooks et al., 2003).  With alternate electron

acceptors available, e.g., ferric-iron, uranyl reduction may be

completely inhibited—a possibility we test here.

Uranyl reduction within ferrihydrite coated sands inoculated with S. putrefaciens strain CN32 undergoes rapid and

extensive reduction (see above, left).  Breakthrough is not observed within 52 d of reaction (in fact, dissolved U(VI)

does not even progress beyond the bottom sampling port over this time period).  Utilization of U(VI) impedes, albeit
only slightly, Fe(III) reduction and leads to the development of goethite.  In contrast, when equilibrated with calcite at

pH 7 (2.9 mM Ca), uranyl reduction is greatly retarded and U(VI) breakthrough is observed after 15 d (above, left).

Owing to reductive precipitation of uranium (above, right) in the absence of calcium, nearly 4 g/Kg of U are

deposited within the initial section of the flow-field (above, middle).  In contract, uranium remains in the hexavalent

state with calcium present (above right) and minimal uranium, as compared to columns without calcium, is

incorporated into the solid phase (above, middle).   Lower calcium concentrations, down to 0.5 mM, have similar
inhibitory effects on uranyl reduction.
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