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• Apply these nonlinear tools to field and laboratory studies relevant to the

NABIR Program.

• Provide these tools and guidance in their use to other researchers.
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(4) AVAILABILITY OF ANN DATA ANALYSIS TOOL KITS

• Web-Based Toolkit - http://www.bioinformatics.edu/webann

User-friendly interface that allows users to easily submit data

Includes modules for: (1) Data summarization; (2) Architecture

selection; (3) Prediction, classification and dimension reduction

Uses readily available software components.

Allows new components to be easily added.

• Matlab Toolkit

Code (m-files) is available to perform FFANN training, input training,

error-based pruning, k-fold cross-validation, simulated annealing,

importance analysis, smooth predictions using kernel regression, and

input reduction with PCA.

M-files run with freely available Netlab toolkit (Nabney 2000).

Contact authors for distribution
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OVERVIEW

A major challenge in the successful implementation of bioremediation is

understanding the structure of the indigenous microbial community and how

this structure is affected by environmental conditions. Culture-independent

approaches that use biomolecular markers have become the key to

comparative microbial community analysis. However, the analysis of

biomarkers from environmental samples typically generates a large number

of measurements. The large number and complex nonlinear relationships

among these measurements makes conventional linear statistical analysis of

the data difficult. New data analysis tools are needed to help understand

these data.

We adapted artificial neural network (ANN) tools for relating changes in

microbial biomarkers to geochemistry. ANNs are nonlinear pattern

recognition methods that can learn from experience to improve their

performance. We have successfully applied these techniques to the analysis

of membrane lipids and nucleic acid biomarker data from both laboratory

and field studies. Although ANNs typically outperform linear data analysis

techniques, the user must be aware of several considerations and issues to

ensure that analysis results are not misleading:

1) Overfitting, especially in small sample size data sets

2) Model selection

3) Interpretation of analysis results

4) Availability of tools (code)

This poster summarizes approaches for addressing each of these issues.
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SUMMARY

• ANNs are robust and powerful data analysis tools for uncovering nonlinear

relationships in complex microbial data sets.

• ANNs typically outperform linear models in predicting microbial community

structure from geochemistry. An important exception is when the underlying

relationship is simple or approximately linear. In this case, it is probably

better to use an accurate parametric model.

• Small number of samples combined with a large number of measurements

increases the danger of overfitting with ANNs with many inputs and outputs.

Techniques that help mitigate the possibility of overfitting are:

Dimension reduction of inputs or outputs with PCA

Error-based pruning of inputs and hidden nodes

Weight decay

• Nonlinear PCA can be accomplished with a simple modification of an

FFANN and is guaranteed to be at least as accurate as PCA.

• The behavior of ANNs can be examined through importance/sensitivity

analysis and the visualization of smooth ANN predictions with the aid of

kernel regression. The proper use of different importance/sensitivity metrics is

an open area of future research, because the choice of metric can have large

effects on the results.

SUMMARY

• ANNs are robust and powerful data analysis tools for uncovering nonlinear

relationships in complex microbial data sets.

• ANNs typically outperform linear models in predicting microbial community

structure from geochemistry. An important exception is when the underlying

relationship is simple or approximately linear. In this case, it is probably

better to use an accurate parametric model.

• Small number of samples combined with a large number of measurements

increases the danger of overfitting with ANNs with many inputs and outputs.

Techniques that help mitigate the possibility of overfitting are:

Dimension reduction of inputs or outputs with PCA

Error-based pruning of inputs and hidden nodes

Weight decay

• Nonlinear PCA can be accomplished with a simple modification of an

FFANN and is guaranteed to be at least as accurate as PCA.

• The behavior of ANNs can be examined through importance/sensitivity

analysis and the visualization of smooth ANN predictions with the aid of

kernel regression. The proper use of different importance/sensitivity metrics is

an open area of future research, because the choice of metric can have large

effects on the results.

REFERENCES

Mackay, D. J. C. 1992. Bayesian Interpolation Neural Computation. 4:415-447.

Moody, J. 1994. Prediction risk and architecture selection for neural networks.

In J. H. F. V. Cherkassky, and H. Wechsler (ed.), From Statistics to Neural

Networks: Theory and Pattern Recognition Applications. Springer-Verlag.

Nabney, I. T. 2001. NETLAB: Algorithms for pattern recognition. Springer,

London, UK.

Saltelli, A., S. Tarantola, and F. Campolongo. 2000. Sensitivity analysis as an

ingredient of modeling. Statistical Science 15:377-395.

Tan, S. and Mavrovouniotis, M.L. 1996. Reducing data dimensionality through

optimizing neural network inputs. AIChE Journal  41:1471-1480.

REFERENCES

Mackay, D. J. C. 1992. Bayesian Interpolation Neural Computation. 4:415-447.

Moody, J. 1994. Prediction risk and architecture selection for neural networks.

In J. H. F. V. Cherkassky, and H. Wechsler (ed.), From Statistics to Neural

Networks: Theory and Pattern Recognition Applications. Springer-Verlag.

Nabney, I. T. 2001. NETLAB: Algorithms for pattern recognition. Springer,

London, UK.

Saltelli, A., S. Tarantola, and F. Campolongo. 2000. Sensitivity analysis as an

ingredient of modeling. Statistical Science 15:377-395.

Tan, S. and Mavrovouniotis, M.L. 1996. Reducing data dimensionality through

optimizing neural network inputs. AIChE Journal  41:1471-1480.

EXAMPLE DATA

• FRC Clone Library Study – relate geochemistry to nirS, nirK, and dsrA

clones in groundwater samples taken from six wells (5 contaminated) at the

FRC.

• Microcosm Study – relate addition and removal of metals to membrane

lipids (PLFAs) in laboratory microcosms.

• Shiprock (UMTRA) Study – relate geochemistry to membrane lipids in

groundwater samples collected at the Shiprock, NM UMTRA site.

APPROACH

• ANNs are nonlinear and non-distributional. They make weaker assumptions

than traditional statistical classifiers, are tolerant of missing or noisy data,

and perform rapid analysis on new data.

• ANNs are networks of simple computational units interconnected by links

or weights.

• Supervised Learning: Feedforward ANNs (FFANNs)

Used to predict a set of variables from a second set of variables.

Regression analysis; classification.

• Unsupervised Learning: Input Learning (modification of FFANNs)

Used to manage complexity in high-dimensional data sets in order to

simplify analysis, visualize data, and increase understanding.

Dimension reduction; clustering; feature extraction.
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 (1) OVERFITTING

Input Reduction through Principal Components Analysis

• A small sample size can increase the risk of overfitting in an ANN

containing a large number of weights.

• If a small number of principal components explain a large proportion of the

variance, then these components can be substituted for the original variables.

Thus the model size is substantially reduced with little loss of information.

• pH, nitrate, Tc-99, nickel, total organic carbon (TOC) and nonpurgable

organic (NpOC) carbon load heavily on PC1.

• Uranium and sulfate load most heavily on PC2.

• Dissolved oxygen (DO) loads most heavily on PC3.

• First three PCs accounted for 91% of variance in data set.

Dimension Reduction Through Input Training

• Reduce dimensionality of input data by finding optimum values for a small

number of input nodes in an ANN.  A FFANN predicts or reproduces the

original (scaled) values in the output layer.

• Ordinary backpropagation algorithm was extended to the input layer where

activation values are re-estimated during training along with weights to

serve as a condensed representation of the original input.

• Nonlinear analogue of PCA (Tan and Mavrovouniotis 1996).

• Different reduced dimension representations can be generated by starting

with random initial input values.

• A very efficient solution is obtained when the output of a PCA is used as the

starting values for input training.

Cross-Validation Method (Leave-One-Out)

• For N sample data points, train the model on N-1 data points, and then test

model generalization performance on data point left out of training.

• Repeat first step N times, leaving out a new data point on each iteration,

until every data point has been tested on a different model.

• Estimate training error with a model training using all the data.

• Estimate the overall leave-one-out (LOO) error by combining the LOO

estimates from the individual iterations.

• Data-efficient and very useful for small samples because part of the data

does not have to be set aside for testing – all data is used for both training

and testing.

Weight Decay

• A form of regularization that aids in minimizing overfitting.

• Improves generalization performance of ANNs (Mackay 1992).

• An additional penalty is added to the error term in computing the cost

function during training. The extra term tends to reduce model complexity

by imposing a penalty on large weights, where large weights are associated

with more complex functions.
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(3) INTERPRETATION OF ANALYSIS RESULTS

• ANNs are often treated as a black box which is unsatisfactory for

understanding relationships between sets of variables. We often want to

estimate the relative sensitivities or importances of a set of explanatory

variables for a given set of predicted variables. However, sensitivity is often

ill-defined outside a specific problem context.

• Many measures are only locally defined or are biased toward large or small

values. Two popular definitions of local sensitivity (Saltelli et al. 2000):

These measures are converted to global values: mean(abs(Sj))

• We want to estimate the relative importances of a set of predictor variables

to a set of predicted variables. We base the sensitivity (S
i
) of input variable

x
i
 on the increase in error resulting from the effective removal of x

i
 as a

casual factor. This is done by substituting the mean value of x
i
 in each

sample and then running the ANN using all the data. The sum of squared

error (SSE
i
) resulting from this method is:

• The sensitivity is the proportional increase in model error after effective

removal of the input variable:

 

where SSE
orig

 is the total error resulting from using the original values to

train the ANN.

• This unbiased local model-error-based importance index is based on amount

of degradation in the accuracy of ANN predictions when a particular input

is effectively removed from the model.

• Inputs that are “important” predictors should severely degrade ANN

performance when their effects are removed from the model.

• nirK and nirS are most sensitive to the 1st principal component (nitrate, pH,

carbon, Tc-99, and nickel).

• dsr2 is most sensitive to the 1st and 2nd principal components while dsr1 is

most sensitive to the 3rd principal component (DO).
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(2) MODEL SELECTION

Sensitivity-Based Pruning

• Many methods exist to define optimum ANN architectures. Two general

categories are constructive and pruning methods. Pruning methods start with

an architecture that is known to be too large and eliminate nodes/weights

until a parsimonious model is found.

• Some pruning methods are: (1) optimal brain surgeon, (2) weight

elimination and (3) sensitivity-based pruning (Moody 1992) which is

exclusively used for node pruning. An advantage of (3) is that it is capable

of simultaneously pruning nodes in both input and hidden layers.

• In sensitivity-based pruning a large initial network is trained. The training

error is computed after deleting each individual node in the training and

hidden layers. The node resulting in the smallest error increase is

eliminated. The procedure is repeated until all possible deletions produce

large errors.

• In this example, the optimum architecture is found after 8 deletions in the

hidden layer, but none in the input layer.
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