

Field scale evaluation of biostimulation in the near source zone of the former S3 ponds at Oak Ridge

Jack Carley

Stanford University

Craig Criddle Scott Fendorf

Michael Fienen Margy Gentile Matt Ginder-Vogel Peter Kitanidis Jian Luo Anna Michalak Jennifer Nyman Julie Stevens Weimin Wu

Universität Stuttgart

Retec

Robert Hickey Raj Rajan Dan Wagner

Susan Hubbard Ken Williams

Gill Geesey David Cummings

Argonne

Ken Kemner

Oak Ridge National Laboratories

OAK RIDGE NATIONAL LABORATORY

Craig Brandt Scott Brooks Sue Caroll Matthew Fields Baohua Gu Philip Jardine Tonia Melhourne Terry Gentry Ye-Kyoung Ku Ken Lowe Stacy Rast Jeff Riggs Jizhong Zhou Yul Roh Christopher Scaadt Bobette Nourse

NABIR Field Research Center

David Watson

The Oak Ridge S3 ponds

- Depleted uranium
- Strong acids (HNO₃ and H₂SO₄)
- Halogenated solvents
- Heavy metals

1951-1984 : wastes stored in unlined ponds

Contaminants in groundwater near the S3 ponds

Inorganic		Organic	
<u>Constituents</u>	Concentrations	<u>Constituents</u>	Concentrations
рН	3.4-3.6	BOD5	200 mg/L [*]
TIC	202-401 mg/L	COD	300 mg/L*
Chloride	249-298 mg/L	ТОС	65-81 mg/L
Sulfate	843-1116 mg/L	2-Butanone	69-84 µg/L
Nitrate	7500-8963 mg/L	Acetone	340-700 μg/L
Nitrite	Low	Ethanol	200 µg/L
Uranium	42-51 mg/L	Chloroform	34-36 µg/L
Technetium-99	35-40 nCi/L (80-89 dpm/ml)	Tetrachloroethene	2100-3300 µg/L
Ni	11.5-14 mg/L	Trichloroethene	94-130 µg/L
Cd	0.45 mg/L	cis-1,2 Dichloroethene	700-740 µg/L
AI	541±47 mg/L	1,1,2-trichloro- 1,2,2- trifluoroethane	1200-1500 μg/L
Са	931±74 mg/L	Methylene chloride	39-42 μg/L
Mg	174±11 mg/L	Citric acid	~6 mg/L [#]
Mn	130±9 mg/L	Acetic acid	~120 mg/L #
Sb	<0.003 mg/L		
Cr	0.17 mg/L		
Pb	0.03 mg/L		
Se	0 02 mg/l		

* estimated value: a measurement is needed.
values for MLS FW 100, 40' depth.

Rationale for work near the source zone

The source zone is a reservoir of U(VI) for long-term groundwater and surface water contamination.

About 98% of the U(VI) in the near source zone is sorbed to solids or part of a solid phase.

The remaining 2% of U(VI) is dissolved in the groundwater at highly toxic levels (20-50 mg/L).

Conversion of solid-associated U(VI) into highly insoluble U(IV) will prevent dissolution and desorption, decreasing the time and cost of remediation.

PRIMARY OBJECTIVE

Evaluate the rates and mechanisms of U(VI) reduction by microbial populations

 $UO_2(CO_3) + H^+ + 2e^- = UO_2 + HCO_3^-$

A few electrons goes a long ways:

- 119 mg U are reduced for every mmol of electrons transferred to U(VI).
- This is equivalent to 119 mg U reduced/mg H₂
- It is also equivalent to 119/8 = 14.9 mg U reduced/ mg COD

Hypotheses

• Biological reduction of U(VI) in the S-3 soils is a multistep process involving desorption/dissolution of U(VI), followed by uptake/reductive mineralization.

• Desorption/dissolution will typically limit the overall reduction rate, with highest rates observed under conditions that favor partitioning of U(VI) into the aqueous phase (i.e., elevated pH and TIC levels).

• Both metal- and sulfate-reducing bacteria will play a role in U reduction, with iron-reducing bacteria acting first followed by sulfate-reducing bacteria.

Chemistry considerations

Low pH (~3.5): - buffered by Al³⁺ (~20 mM)

High U(VI): ~98% on the soil (~400 mg/kg) ~2% in groundwater(~ 40 mg/L)

High NO₃-:

130-480 mM in groundwater - NO_3^- and denitrification intermediates inhibit U(VI) reduction (Senko et al., 2001)

High Ca²⁺:

~20 mM in groundwater - Ca²⁺ inhibits U(VI) reduction at 5 mM (Brooks et al., 2003)

 $UO_2(CO_3) + H^+ + 2e^- = UO_2 + HCO_3^ Ca_2UO_2(CO_3)_3 + 2e^- = 2Ca^{2+} + UO_2 + 3CO_3^{-2-}$ $E^{\circ'} = -0.046 V$

Eh/pH Plot of Uranium Speciation (300 mg/L TIC, 40 mg/L U)

No Ca

Uranium adsorption

Potential clogging agents

- Aluminum hydroxide form at pH 5.
- Calcium and magnesium carbonates form at pH 7-9.
- N₂ gas forms during denitrification.
- High levels of biomass are produced during denitrification.

pH adjusted to 7 with 50% liquid from denitrifying batch cultures

pH adjusted to 7 with Na₂CO₃ pH adjusted to 7 with KOH

Clogging happens (and what to do about it)

Clogged pump head screen. The white precipitate dissolved in a 2% HCl solution after 1.5 hour. Clogging observed even with < 4 mg/L Al.

Surge block for cleaning wells

Geology

• Saprolite contains a highly interconnected fracture network with densities of 100-200 fractures/m. Fractures are < 5-10% of the total porosity, but carry >95% of the groundwater flow.

• The fractures surround a high porosity, low permeability matrix that is a source and sink for contaminants.

Underlying Bedrock

Core Mineralogical Evaluations

Overlying Gleyed leached flow zone with high U, low pH groundwater

U=155 mg/kg 0.25 cm Black precipitate Zone with higher pH and lower U in groundwater U=730 mg/kg Very fine sands Fe oxide with Fe oxide accumulation precipitates zone 0.25 cm

A high U zone was detected in the center of the test cell at a depth of 46'.

XRD results:

Gleyed Zone - Quartz, Vermiculite, Mica, HIV, Ca-feldspar Black Zone - Quartz, Ca-feldspar, Vermiculite, Mica, Goethite

Geophysics was used to identify areas of contaminant transport

S-3 Ponds Cap Surface Seismic/Electrical Resistivity (Doll et al., *SAGEEP*, 2002).

Electrical Resistivity Low (~4 Ohm-m) High (~150 Ohm-m)

Low Resistivity ~ High Nitrate

Contour Lines: Seismic Velocity (m/s)

The "Big Top" where extracted groundwater is treated to enable metal reduction *in-situ*

Tanker for chemical sludge disposal

Bag filters for disposal of biomass

Inside the Big Top

Ex-situ conditioning of water in treatment zone

- 1. Precipitate Al and Ca
- 2. Remove NO₃⁻ by denitrification in FBR
- 3. Vacuum strip to remove VOCs and N₂

The aboveground treatment train

Vacuum stripper

Two-step chemical precipitation Fluidized bed reactor (FBR)

FBR sampling and characterization Phylogenetic analyses Functional gene microarrays Functional monitoring Well TPB16 enrichment

Two piilot scale FBRs

Full scale FBR

Fluidized Bed Reactor

Removes NO₃⁻ as N₂ Efficient Cheap Raises pH Demonstrated in two continuous pilot-scale systems (pH 7.4 and 9.2)

Denitrifying biofilms growing on granular activated carbon in pilot scale FBR at Stanford. Some of the bacterial general found in this community include *Zoogloea*, *Xanthomonas*, *Dechloromonas*, *Dechlorosoma*, *and Sporumosa*.

FBR: nitrate removal

Well layout

before plumbing

after plumbing

Skid with pumps and meters for wells inside Big Top

Multilevel sampling wells

Screened Interval = 38-45'

Cross-sectional view of the injection/extraction wells and the MLS wells.

Chemical profiles with depth at the MLS wells

Chemical profiles with depth at the MLS wells (cont)

Seismic and Radar Tomography

Mapping subsurface material heterogeneities using cross-borehole techniques.

Hubbard et al., 2003

Regions of the subsurface

Overall Strategy

- 1. Perform a tracer study to determine connectivity of wells and residence time distribution. Obtain desorption rates from the rebound.
- 2. Flush outer and inner cell with clean water at pH 4 to remove Al, Ca, and most of the nitrate. Follow with flush at pH 5-6 to prepare for denitrification.
- 3. Stimulate denitrification *in-situ* and vacuum strip N₂ to remove residual nitrate.
- 4. Increase pH of inner cell to mobilize U(VI) and add electron donor to inner cell to reduce U(VI).

Tracer study

A dual dipole tracer injection-withdraw test was conducted using $CaBr_2$ and $CaCl_2$ in an effort to create an inner and outer hydraulic cell.

Results confirmed location and transport features of preferential flow regimes and slow flowing matrix regimes.

Experimental data was numerically simulated and the model used to design the *in situ* U bioreduction system.

Tracer study simulations

Effect of tracer clean water flush on nitrate in MLS wells

0.8

- FW 101-1

- FW 101-3

Mid-depths were flushed well Bottom depth was poorly flushed

Natural gradient site recovery solute breakthrough

Natural gradient contaminant transport monitored during site recovery.

Quantification of solute residence times, direction of groundwater flow, and strike vs. dip interactions.

Overall Strategy

1. Perform a tracer study to determine connectivity of wells and residence time distribution. Obtain desorption rates from the rebound.

- 2. Flush outer and inner cell with clean water at pH 4 to remove Al, Ca, and most of the nitrate. Follow with flush at pH 5-6 to prepare for denitrification.
- 3. Stimulate denitrification *in-situ* and vacuum strip N₂ to remove residual nitrate.
- 4. Increase pH of inner cell to mobilize U(VI) and add electron donor to inner cell to reduce U(VI).

pH increase in inner and outer loop extraction well

Kinetic Model

Assumptions

- Kinetically controlled sorption/desorption
- Kinetic mass transfer between two regions

Modeling of flushing

•The half-life of nitrate in the second immobile region is about 3 months. To deplete the second immobile zone would take about one year.

• The mobile region definitely responds to flushing and a low average Nitrate concentration can be maintained while removing the Nitrate as it enters the mobile zone.

Overall Strategy

1. Perform a tracer study to determine connectivity of wells and residence time distribution. Obtain desorption rates from the rebound.

Flush outer and inner cell with clean water at pH 4 to remove AI, Ca, and most of the nitrate. Follow with flush at pH 5-6 to prepare for denitrification.

- 3. Stimulate denitrification *in-situ* and vacuum strip N₂ to remove residual nitrate.
- 4. Increase pH of inner cell to mobilize U(VI) and add electron donor to inner cell to reduce U(VI).

MLS 102-3

Soluble COD

MLS 102-3

рΗ

Soluble U(VI)

Next up for the fieldBuild up U-reducing biomass

Increase pH but avoid clogging

• Drilling

Oxidation experiments

In-line Uranium Immunosensor

This sensor has the ability to autonomously run a standard curve from stock reagents and prepare environmental samples for analysis. The sensor measures U(VI) at concentrations from 4-100 nm (0.6-24 ppb)

Optics, LED, and capillary bed containing particles with immobilized capture ligand.

Fluorescently labeled antibody and environmental contaminant are mixed in a disposable syringe.

Drive motor pushes the antibody-contaminant mixture over the capture ligand

Handheld Immunosensor

Subsurface Microbiology

Monitoring of succession

Baseline analysis of low pH community Slides on inner loop sidestream Small packed columns Filtered samples from inner loop - collected for microarray analysis and plate counts U-reducing enrichments - phylogeny, kinetics **Phylogenetic analyses Kinetic model development**

Genes Included in New Functional Gene Array

	# Genes	# Genes with	# Genes with
Functional Gene	Downloaded	Unique Probes	Group Probes
Denitrification			
Nitrate reductase (narB)	34	10	22
Nitrate reductase (narG)	544	196	227
Nitrate reductase (napA)	145	56	81
Nitrate reductase (nasA)	120	57	55
Nitric oxide reductase (norB)	68	46	13
Nitrite reductase (nirS)	411	140	129
Nitrite reductase (nirK)	952	139	132
Nitrous oxide reductase (nosZ)	273	117	94
subtotal	2547	761	753
Other Processes			
Carbon fixation	in progress	in progress	in progress
Carbon polymer degradation	1243	828	263
Methane oxidation/reduction	1377	505	392
Metal resistance/reduction (Cd, Ni, etc.)	2263	1302	604
Nitrification	1258	51	361
Nitrogen fixation	2162	467	623
Organic remediation	5032	in progress	in progress
Sulfur reduction	989	478	345
Grand Total	>16871	>4392	>3341

Key points

• <u>Site characteristics</u>: high acidity, high nitrate, high sulfate, high metals. Organisms identified repeatedly at low pH: *Acidovorax, Burkholderia, Pseudomonas, Microbacterium, Clostridia*.

• <u>Aluminum buffers the system at low pH and precipitates</u> when the pH is increased. Our strategy is to remove it *exsitu* by precipitation.

• <u>Nitrate inhibits U(VI) reduction</u>. Our strategy is to remove bulk nitrate *ex-situ* and residual nitrate *in-situ* (with ex-situ vacuum stripper).

• <u>Calcium inhibits U(VI) reduction</u>. Our strategy is to remove it *ex-situ* by precipitation.

More key points

• <u>A nested recirculation scheme appears to protect the</u> treatment zone from aluminum, nitrate, and acidity.

 Addition of ethanol to the inner loop effectively removes the <u>nitrate</u>

• We have preliminary evidence for microbial removal of U.

Insights and new tools

• Control of pH/TIC appears to be a useful strategy for increasing reduction, by increasing desorption/dissolution rates.

• The vacuum stripper with pH control will be a useful tool for management of U speciation and control of N₂.

 <u>A two-stage process seems feasible for site remediation.</u> <u>This approach would have coupled ex-situ and in-situ</u> <u>elements.</u>

- Model coupled mass transfer and reaction
 Assumptions
 - Kinetically controlled sorption/desorption
 - Kinetic mass transfer between two regions
 - Microbial reduction of U(VI) in the mobile zone

 k_w is a lumped parameter accounting for mass transfer. It has units of time⁻¹. U_{eq,aq} is the concentration of U in equilibrium with the solid phase concentration. It is a function of pH and TIC. X is biomass concentration, and k' is a pseudo second order rate coefficient.

Rate of mass transfer = $k_w(U_{aq, eq} - U_{aq})$ Rate of reduction = k'X U_{aq}

At steady state: Rate of mass transfer = $k_w(U_{aq,eq}-U_{aq})$ = Rate of reduction = $k'XU_{aq}$

Preliminary calculations indicate that MT limitation is likely

Newly added feature:

Vacuum stripper on the inner cell recirculation loop enables control of TIC and N₂

Stage 1 -removal of aluminum, calcium, nitrate

Batch microcosm studies: ethanol biostimulation of U reduction in the presence of contaminated sediment

X-ray absorption spectroscopy shows the reduction of **solids-associated** uranium in viable, but not control, microcosms.

Column microcosm

- Source: a hot spot in our test plot, FWB 104, 38-43 ft.
- Total U(VI) ~500 mg/kg.
- Low pH (3.7), high Al, Ca, Ni, and others.
- High phosphate ~1000 mg/kg.

Step 1: Acid flush to remove AI and Ca

Flush with 10 mM KCl, pH ~4.

Step 2: pH adjustment + tracer test

Flush with 30 mM NaHCO₃, 15 mM K₂CO₃, 5 mM K₂SO₄, CO₂ purged, pH ~7.1.

Step 3. Biostimulation

- > Strictly anaerobic operation.
- Column was operated in a continuous recirculation mode to simulate field operations (0.2 mL/min).
- Biostimulation was achieved by periodic ethanol addition (~4 mM ethanol spikes, 30 mM NaHCO₃, 30 mM K₂CO₃, 5 mM K₂SO₄, CO₂ purged, pH ~7.1).

Sample collection reservoir within recirculation loop

- > No evidence of microbial activity for the first 30 days; pH at ~6.5. U(VI) at 5 mg/L.
- > FBR biomass was added on day 30. U(VI) begins to increase, along with pH.
- Days 30-60: ethanol disappears first, acetate appears then slowly disapears as sulfate drops. Soluble U(VI) increases to 15 mg/L. U(VI) rises to 15 mg/L.

> Days 60-130: U(VI) levels fall; pH remains high.

Initially soluble U(VI) levels increased as pH increased

Days 60-120: acetate accumulates as U(VI) falls, no sulfate!

Day 130: sulfate added

Days 130-170: acetate falls, then sulfate

Days 170-220: ethanol added but no acetate formed, sulfate falls, pH increases dramatically, <u>U(VI) starts</u> <u>to increase</u>. Methane detected.

Before

After

Background levels of denitrifiers, metal-reducers, and sulfate-reducers on sediment (MPN/g)

	Nitrate reducers	Ferric citrate reducers	Sulfate reducers
FW-107	3500	46	240
(13.2 m)			
FW-109	5400	1700	1100
(15.4 m)			

