

Virtual Institute of Microbial Stress and Survival

Deduction of Stress Response Pathways in Metal and Radionuclide **Reducing Microorganisms**

http://vimss.lbl.gov

2004

NABIR

Sandia

FRSITY

MIAM

Project Application Goals

- To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites
- To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation
- To implement proposed policies in the field and compare results to model predictions
- Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models

Project Sciences Goals

- Compare physiological and molecular response of three target microorganisms to environmental perturbation.
- Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data.
- Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways.
- From this analysis derive an understanding of the mechanisms of pathway evolution in the environment.
- Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

Organisms

- Primary organism:
 - Desulfovibrio vulgaris
 - δ-proteobacteria,
 - "Anaerobic"
 - SRB, uses sulfate and sulfite as terminal electron acceptors for growth.
 - Oxygen, iron, nitrite, chromate, and U(VI) can be reduce but growth is not observed.
 - Does not reduce nitrate
 - Has a megaplasmid containing nitrogen fixation genes
 - Has a number of interesting pathogenicity factors: type III-secretion, adhesins, hemagluttin
 - common in eutrophic environments, much less known about this organism
- Comparison organisms:
 - Shewanella oneidensis MR-1
 - γ-proteobacteria
 - "facultative anaerobe"
 - Reduces nitrate
 - Does not have nitrogenase
 - more common in oligotrophic environments
 - Geobacter metallireducens
 - δ-proteobacteria,
 - "Anaerobic"
 - More common in oligotrophic environments
- Stressors: O₂, metals, TEAs, PO₄, nitrate, nitrite, pH, salt, heat

Design of Project

Applied Micro

- AEMC Applied Environmental Microbiology Core
- Characterize biogeochemical environment of organisms
- Develop principled environmental simulators for production of biomass and growth characterization
- Cell-biological characterization
- Phenotyping/Environmental Physiology characterization
- Terry Hazen: Core Leader
- LBNL, UMC, UWASH, ORNL, UMO

NABIR Field Research Center Uranium-contaminated site

-Sulfate reducers common

–Lactate stimulated soil columns demonstrated increases in sulfate reducers after U reduction, including 4 *Desulfovibrio* spp. using Affymetrix GeneChip microarray

Subsurface sediments from the wells FWB-107 (13.2 m) and FWB-109 (15.4 m) in Area 3 were serially diluted in a basal salts medium (NaCl, NaHCO₃, NH₄Cl, minerals, 99%:1% N₂/CO₂) with 5 mM lactate and 5 mM ethanol. The dilutions were provided with nitrate, Fe(III)-citrate, or sulfate and incubated anaerobically at approximately 18 to 20½C. The results are summarized in the table below:

Matt Field, Terry Hazen, Gary Anderson

OTU number	OTU designation	Representative organism	Control	Lactate Stimulated*
02280401010000.4114	Dhb.retbaense_subgroup soil PBS-21	Desulfohalobium retbaense	nd	3234
02280401040100.683	Dsv.halophilus_subgroup Desulfovibrio sp. Ac5.2	Desulfovibrio halophilus	nd	2560
02280401040500.4661	Dsv.aminophilus_subgroup clone R2b32	Desulfovibrio aminophilus	nd	2772
02280401040600.2471	Dsv.africanus_subgroup delta clone:KB47	Desulfovibrio africanus	nd	2640
02280401041100.2700	Dsv.desulfuricans_subgroup delta clone:Rs-N31	Desulfovibrio desulfuricans	nd	2921

* Average difference, Sulfate reducing bacteria detected using the Affymetrix GeneChip high-density oligonucleotide array. NABIR FRC Area 2 Sediments

Community analysis of sulfatereducing enrichment from FW-109. The predominant population comprised approximately 25% of the sampled diversity and had 88% sequence identity with **Desulfosporosinus** Blif. Subpopulations that had 95% to 97% sequence identity with **Desulfosporosinus** orientis constituted for an additional 37% of the library. The clone E04-023 constituted just over 10% of the library, and had 98% sequence identity with Clostridium chromoreductans . A small fraction of the enrichment community (5%) appeared to have only 87% sequence identity with previously uncultivated clones that originated from a chlorobenzene-degrading community.

Hanford 100H Chromium-contaminated site

- Sulfate Reducers and Geobacter in most sediments initially though densities of all bacteria quite low as indicated by PLFA and dominated by G+ bacteria, shifted to G- after lactate stimulation.
 - 16S rDNA genes were only successfully amplified from sediments that had been stimulated with lactate, HRC, or MRC. Further PCR analyses using group specific primers indicated the presence of *Geobacter* sp. and *Desulfovibrio* sp. These amplicons were also assayed with a 16S microarray (Affymetrix GeneChip). The microarray indicated that all five subgroups within the proteobacteria were present, including 2 species of *Desulfovibrio*.
- The biostimulated sediments reduced Cr(VI) from 1000 ppm to non-detect in 1 week.

Exp1 Exp5									
þ	1-Enterococcus_group human infant D8E 2-Vr.pantothenticus_subgroup Salibacillus sp. YIM-kkny16 3-Brevibacillus agri	Enterococcus Grp B. megaterium Grp Brevibac. Grp	Gram (+) Gram (+) Gram (+)	Exp	51 =	Cont	rol		
	 4-Filifactor villosūs 5-Alkalibacterium olivoapovliticus 6-B.badius_subgroup Bacillus sp. SAFN-028 7-C.lituseburense Clostridium sp. 48 8-Planococcus southpolaris 9-Bacillus galactosidasius 10-Bacillus galactosidasius 11-Bacillus firmus 12-Eub.nodatum_subgroup oral clone P2PB_46 P3 13-C.aminobutyricum_subgroup clone IA-19 14-Environmental_clone_wchb1-31_group clone SJA-108. 15-Alvinella_pompejana_symbionts_subgroup pesilon clone 33-FL76B 16-Mrb.hydrocarbonoclasticus_group Marinobacter sp. MR-1 17-Achromatium_assemblage Crater Lake CL500-74 18-Sphingobacterium_group CAGY10 strain CAGY10 19-Av avenae_subcroup Acidovoray en_isolate ENe1 	Carnobacteria Carnobacteria B. megaterium Eubacteria B. sphaericus Grp B. megaterium Grp B. megaterium Grp Eubacteria Eubacteria Environmental clone % e-proteobacteria γ-proteobacteria Sphingobacteria β-proteobacteria	Gram (+) Gram (+) Gram (+) Gram (+) Gram (+) Gram (+) Gram (+) Gram (+)	Exp	o5 =	lacta	te st	imul	ated
	20-Pol.cellulosum_subgroup clone BCTP37 21-Mrb.hydrocarbonoclasticus_group clone:pBSB4.12 22-Mag.gryphiswaldense_subgroup clone LPB60 23-Ectothiorhodospira_group yard-trimming-compost clone S-20 24-Ral.eutropha_group soil clone Tc119-F01 25-Sphingobacterium_group_Wuhad7	δ-proteobacteria γ-proteobacteria α-proteobacteria γ-proteobacteria β-proteobacteria Sphingobacteria		Colo Dista 0.00	r based on ance functi 0.15	sorted raw on: Euclidea 0.67	data an distanc 0.86	e 1.00	
	26-Him.subglaciescola_subgroup 'A1-UMH 8% pond' 27-Rcy.tenuis_subgroup beta clone 8-5 28-Lew.nigricans_subgroup clone S22 29-Fix.sancti_subgroup clone CC14 30-Environmental_clone_wcha2-26_subgroup SR1 clone SRB52 31-Petrobacter succinimandens 32-Dsv.halophilus_subgroup sp. clone group A7hq 33-Saprospira grandis - 34-Dsv.africanus_subgroup clone SHA-41	γ-proteobacteria β-proteobacteria Lewinella Lewinella Environmental clone β-proteobacteria δ-proteobacteria Lewinella Lewinella β-proteobacteria δ-proteobacteria Δ-proteobacteria δ-proteobacteria							

AEMC: FTIR Profiling

 Synchrotron FTIR time course of infrared absorption intensity, indicative of oxidative stress levels in different biologically important molecules in Desulfovibrio vulgaris after exposure to atmospheric oxygen.

• Also found signatures for Cytochrome B hemes Hoi-Ying Holman, Terry Hazen

AEMC: Electron Microscopy

Electron microscopic images of D.v. under oxygen exposure

Hoi-Ying Holman, Terry Hazen

The Hydrogen Burst

Transient H₂ accumulation during growth of *Desulfovibrio* species in <u>batch culture</u>

Modeling of the Hydrogen Burst -*Desulfovibrio* species batch culture

Mass Balance Equations Used to Model the Growth of D. vulgaris. in Sealed Serum Bottles

Lactate

Acetate

Sulfate

Hydrogen in liquid

Total hydrogen sulfide in liquid

Total Carbonates in liquid

Hydrogen in headspace

Hydrogen sulfide in headspace

Carbon dioxide in headspace

Biomass growth

$$\begin{aligned} \frac{dLac}{dt} &= r^{L} + r^{LS} + 0.05r^{HS}(1 - \gamma) \\ \frac{dAc}{dt} &= -0.906r^{L} - 0.884r^{LS} + 0.05r^{HS}(\gamma) \\ \frac{d[SO_{4}^{2-}]}{dt} &= 0.442r^{LS} + 0.262r^{HS}(1 - \gamma) + 0.238r^{HS}(\gamma) \\ \frac{d[H_{2}]}{dt} &= -1.906r^{L} - 0.116r^{LS} + r^{HS} - \frac{k_{H2}}{R_{g}T} (H_{H2}[H_{2}] - P_{H2}) \frac{V_{g}}{V_{l}} \\ \frac{dC_{TH2S}}{dt} &= -0.442r^{LS} - 0.262r^{HS}(1 - \gamma) - 0.238r^{HS}(\gamma) - \frac{k_{H2S}}{R_{g}T} (H_{H2S}[H_{2S}] - P_{H2S}) \frac{V_{g}}{V_{l}} \\ \frac{dC_{TCO3}}{dt} &= -0.953r^{L} - 0.942r^{LS} - 0.025r^{HS}(1 - \gamma) + 0.025r^{HS}(\gamma) - \frac{k_{CO2}}{R_{g}T} (H_{cO2}[H_{2}CO_{3}^{*}] - P_{cO2}) \frac{V_{g}}{V_{l}} \\ \frac{dP_{H2}}{dt} &= k_{H2} (H_{H2}[H_{2}] - P_{H2}) \end{aligned}$$

$$\frac{dP_{H2S}}{dt} = k_{H2S} \left(H_{H2S} [H_2 S] - P_{H2S} \right)$$

 $\frac{dP_{CO2}}{dt} = k_{CO2} \left(H_{CO2} [H_2 CO_3^*] - P_{CO2} \right)$

 $\frac{dX}{dt} = -Y^L r^L - Y^{HS} r^{HS} - Y^{LS} r^{LS} - bX$

Noguera, et al. 1998. Bioeng.. Biotechnol. **59:** 733-746. David Stahl

Syntrophic Growth of *Desulfovibrio* and Methanogen DOE Genomes to Life Initiative

Lactate as electron donor; no electron acceptor $2CH_3CHOHCOO^- + 4H_2O \rightarrow 2CH_3COO^- + 2H^+ + 2HCO_3^- + 4H_2$ $\Delta G^{0'} = -8.4 \text{ kJ} (SRB alone)$

Hydrogen as electron donor; CO_2 as electron acceptor $4H_2 + H^+ + HCO_3^- \rightarrow CH_4 + 3H_2O$ $\Delta G^{0'} = -135.6 \text{ kJ}$ (Methanogen alone)

Combined equations (syntrophic growth) $2CH_3CHOHCOO^- + H_2O \rightarrow 2CH_3COO^- + CH_4 + H^+ + HCO_3^-$

 $\Delta G^{0'} = -144.0 \text{ kJ}$ (SRB plus Methanogen)

David Stahl

AEMC: Co-Culturing

DM indicate co-culture of *Desulfovibrio vulgaris* with *M. maripulidis* David Stahl PM indicate co-culture of *Desulfovibrio sp.* PT2 with *M. maripulidis* Figures C and D depict total amount of umol of gases in head space of tubes.

В

AEMC: BioMass

- Maintenance and archiving of *D. vulgaris* experimental strain (ATCC 29579) to minimize 'culture' drift from multiple transfers
 - Develop and define growth conditions for stress studies using defined media (1000's of growth curves using automated systems)
- QA/QC on all media components and culture conditions, e.g. pH, DO, temperature, containers, anaerobic chamber, etc.
- Physiological and Morphological typing: PLFA, sFTIR, AODC, Fluorescent Antibody (O&H),Omnilog (Phenotype Microarray), SEM, TEM, x-ray, chemotaxis, protien, optical density, lactate/acetate, sulfate, etc.
- Develop and validate large scale production of biomass under sterile, anaerobic, reproducible conditions for simultaneous comparison of control and stress. Currently up to 2 L in triplicate under 2 conditions. Expanding to multiple 3 L no-metal, anaerobic chemostats.
 - Develop techniques for stressing cells that minimize other stress responses: log phase cells, sparge with N and air for comparison of air stress, special porous tubing to maximize DO saturation from air.
 - Develop sampling and processing techniques that minimize contamination, processing, shipping, and maximize sample quality and quantity for simultaneous sampling and processing for 5 different labs.

FGC: Summary of Experiments

	Shewanella			Desulfovibrio			Geobacter m.		
Salt	Т	Ρ	Μ	T	Ρ	М	Т	Ρ	М
рН	Т	Ρ	М	Т	Ρ	М	Т	Ρ	М
Heat	Т	Ρ	М	Т	Ρ	М	Т	Ρ	М
O ₂	Т	Ρ	М	Т	Р	М	Т	Ρ	М
Strontium	T	Ρ	М	Т	Ρ	М	Т	Ρ	М
H ₂ 0 ₂	Т	Ρ	М	Т	Ρ	М	Т	Ρ	М
Nitrite	Т	Ρ	Μ	Т	Ρ	М	Т	Ρ	Μ

Conditions and experiments chosen to develop the different measurement technologies and for sketching out most of our target stress responses

Transcriptome

Joe Zhou, Dorothea Thompson

- Full Oligo Arrays for
 - Shewanella,
 - Desulfovibrio vulgaris,
 - Geobacter metallireducens
 - a combined Desulfovibrio/M.
 maripulidis array

Cover all ORFs in the genome with 3574 oligos, including 3471 (97.1%) unique probes and 103 (2.9%) probes which may cross-hybridize with other ORFs

Proteome

 Three different proteomics methods for detection and quantitation of protein levels

 3D LC MS-MS (Martin Keller, Diversa)
 DIGE-MALDI/TOF MS (Anup Singh, SANDIA)
 ICAT MS-MS (Jay Keasling, LBNL)

Microarray Proteome Comparison

- Data from D.v. O₂ stress experiments.
- Top: Comparison of ICAT results to MA data after 5 hrs exposure.
- Bottom: Agreement among proteomic and MA methods

Microarray Sum of Log Levels

Metabolomic Progress

- GC-MS, LC-MS/MS, CE-MS
 - Linear ion-trap, triple quadrupole, single quadrupole MS
- Rapid quenching of metabolism
 D₂O with trichloroacetic acid
 - concentrates metabolites
- ATP, ADP, and AMP measured to calculate the energy charge

 $EC = \frac{[ATP] + \frac{1}{2}[ADP]}{[ATP] + [ADP] + [AMP]}$

- control for proper extraction
- successful if EC = 0.7-0.9

Jay Keasling

CE-MS of amino acids, nucleosides, and organic acids

LC-MSⁿ of nucleotides and CoA's

FGC: Genetic System Development

Two step vs. one step knockout by homologous recombination. Marking deletion and tagged strains using 25-mer molecular bar-codes

Judy Wall, Vince Martin, Jay Keasling

FGC: Shewanella Salt Stress

Differentially Expressed Genes Detected by B-test.

FGC: Shewanella Salt Stress

GOaccn# Fisher's p GO term

	ishe s p	So tem
0016812	0.0337	hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds , in cyclic amides
0016676	0.0082	oxidoreductase activity, acting on heme group of donors, oxygen as acceptor (cytochrome-c oxidase acitvity)
0016627	0.0023	oxidoreductase activity, acting on the CH-CH group of donors
0006412	0.0192	protein biosynthesis
0008863	0.0021	formate dehydrogenase activity
0015934	0.0135	large ribosomal subunit
0003995	0.0019	acyl-CoA dehydrogenase activity
0005515	0.0337	protein binding

FGC: O₂ Stress D.v.

Data just in from the entire team!

Cells grown batch from log phase starter to mid log phase and then sparged with air and nitrogen for 5 h (one generation time) and harvested at T0 and T5 for 5 VIMSS labs.

O₂ Stress in Desulfovibrio vulgaris

nSig	nUarray	р	GOName
26	142	0.0002	transcription termination
4	6	0.0008	4-diphosphocytidyl-2C-methyl-D-erythritol synth
4	6	0.0008	O-acetyltransferase activity
5	11	0.0017	primary active transporter activity
5	11	0.0017	cell wall
11	51	0.0043	proline-tRNA ligase activity
2	2	0.0082	purine base catabolism
2	2	0.0082	adenine catabolism
2	2	0.0082	phenylalanyl-tRNA aminoacylation
2	2	0.0082	prolyl-tRNA aminoacylation
2	2	0.0082	nucleoside triphosphate metabolism
14	77	0.0109	N-acetyltransferase activity
14	77	0.0109	phosphoenolpyruvate-dependent sugar phosph
2	3	0.0233	acyl-CoA or acyl binding
2	3	0.0233	cobalamin [5'-phosphate] synthase activity
2	3	0.0233	chloramphenicol O-acetyltransferase activity
2	3	0.0233	transferase activity, transferring glycosyl groups
2	3	0.0233	transferase activity, transferring hexosyl groups

Fischer exact test of GO terms for DE genes as measured by microarrays at 2hrs revealed numerous up-regulated genes in cell wall and polysaccharide metabolism. Candidates for EPS activity.

Also- why all the sugar activity given D.v. doesn't use hexoses for cell growth?

Differential In-Gel Electrophoresis (DIGE) for Identifying Proteins Involved in Oxygen Stress

Summary of Results: Unique IDs

/				Experime	ntal	Theoretic	al	
	ORF	Score*	Annotation	MW	рІ	MW	pl	Differential Expression
	ORF01081	177	sulfate adenylyltransferase	48779	6.22	47469	6.07	2.75
	ORF04271	104	desulfoferrodoxin	27632	6.06	13983	5.96	-2.38
	ORF00918	89	riboflavin synthase, beta subunit	28427	6.5	23648	5.58	-2.54
	ORF00338	119	adenylyl-sulphate reductase, alpha subunit	38698	6.63	74627	6.52	-2.6
	ORF01214	105	ketol-acid reductoisomerase	44731	6.39	36066	6.04	-2.7
	ORF00530	126	ribosomal protein L9	31561	5.58	17953	5.37	-2.79
	ORF03581	82	dissimilatory sulfite reductase, gamma subunit	26461	5.35	11872	5.14	-2.82
	ORF04274	213	rubredoxin-oxygen oxidoreductase	47912	6.21	45079	5.97	-3.14
	ORF05313	136	dissimilatory sulfite reductase, alpha subunit	52015	5.52	49091	5.42	-3.26
	ORF04950	146	conserved hypothetical protein	38181	6.71	29119	6.4	-8.5

*Protein scores greater than 48 are significant (p<0.05)

Team: Swapnil Chhabra, Sara Gaucher, Masood Hadi, Anup Singh

Down-regulation of Sulfate Reduction Pathway

O2 Stress: Summary of Results

- Cell wall and various sugar metabolism categories are upregulated in response to O₂ stress.
- This is consistent with the EPS activity observed in the electron micrographs, giving us an initial seed group for elucidating and further characterizing those pathways.
- Apparent down-regulation of the sulfate-reduction pathway observed in MA, and confirmed by several proteomics methods.
- Additional evidence suggests this may be an actual O₂ related change (rather than growth effect) is that pyrophosphatase is significantly down-regulated (pyrophosphate is a byproduct of the second step in sulfate reduction), and several genes involved in substrate-level phosphorylation of ADP are upregulated (phosphate acetyltransferase and acetate kinase).
- The attractive speculation resulting from all of this is that Dv may be down-regulating sulfate reduction to increase the amount of reducing power available for O_2 reduction.
- One mechanism for such reduction would be the cydAB operon (cytochrome bd) recently shown to be essential for oxygen consumption in the strict anaerobe Bacteroides fragilis. We note that both cydA and cydB are significantly up-regulated at 2 hours after air sparging compared to t=0.

Baughn AD, Malamy MH.Nature. (2004)The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. **427**(6973):441-4.

CC: Design of Current Components

CC: VIMSS CGDB

http://escalante.lbl.gov http://vimss.lbl.gov

My Genes | 1

My Genes | WWW-BLAST | Advanced Search | Contact Us | Home

Gene Info	Operon & Regulon		Domain Alignment	s	Homolog	gs	Sequences	Add Annotation
<< Previous Gene								Next Gene >
-Select Ortholog		T	ortholog	dd to	o Cart	Gen	ome Browser	Printable Version

Keyword Search: [help]

-- Keyword --

Select Genome(s):

-- Favorites --Escherichia coli K12 Bacillus subtilis Shewanella oneidensis MR-1 Desulfuromonas acetoxidans Desulfovibrio vulgaris Desulfovibrio desulfuricans G20 Geobacter metallireducens Geobacter sulfurreducens PCA -- Bacteria --Aquifex aeolicus VF5 Thermotoga maritima Deinococcus radiodurans Bacteroides thetaiotaomicron VPI-5482 Fusobacterium nucleatum, ATCC25586 ---- Cyanobacteria Thermosynechococcus elongatus BP-1 Synechococcus sp. WH 8102 Synechocystis sp. PCC 6803 Nostoc sp. PCC 7120 ---- Proteobacteria ----- Alphaproteobacteria Chlorobium tepidum TLS Search Info GO Pathways

VIMSS ID	14219
Organism	Escherichia coli K12 (complete genome)
Name	leuB
Synonym	b0073 16128067
Position	80867 81961 (-) on Scaffold ID: 10
Description	NCBI ptt file:3-isopropylmalate dehydrogenase
COG	COG473, Isocitrate/isopropyImalate dehydrogenase
EC number	1.1.1.85 3-isopropylmalate dehydrogenase. (TIGR00169)
Gene Ontology	[B] GO:0009098 leucine biosynthesis [C] GO:0005737 cytoplasm [M] GO:0003862 3-isopropylmalate dehydrogenase activity
InterPro	IPR004429: 3-isopropylmalate dehydrogenase IPR001804: Isocitrate/isopropylmalate dehydrogenase

VIMSSDB: Regulon Prediction

VIMSS regulon browser allows users to browse the neighborhood of genes predicted to be coregulated based on:

- conserved gene order in distant genomes, black lines
- observed to be coregulated in microarray experiments, blue lines
- red lines indicate connections both predicted and observed).

VIMSS: CG Browser

Clicking on a feature will:

- Load Protein Page
- Recenter on feature
- Save as feature of interest

View your current cart View all saved carts Select Organism(s) to Display (Ctrl-Click to select multiple)

CC: Comparative GO Browser

My Genes | WWW-BLAST | Advanced Search | Contact Us | Home

VertiGo: VIMSS to Gene Ontology Browser

(E.col K12)	(S.one MR-1)	(D.ace)	(D.vul	(D.des G20)	(G.met (G.sul PCA	
2713	2316	3606	1801	1875	1973	1996	∃ GO:0003673 : Gene_Ontology
2340	1978	3106	1544	1588	1695	1719	∃ GO:0008150 : biological_process [P]
2263	1915	2964	1491	1541	1627	1652	🛨 GO:0007582 : physiological processes [l]
1666	1526	2330	1152	1194	1377	1336	🛨 GO:0008152 : metabolism [l]
143	118	168	83	84	102	96	🛨 GO:0009308 : amine metabolism [l]
129	112	162	78	78	96	91	🛨 GO:0006520 : amino acid metabolism [l]
16	13	17	10	11	7	8	GO:0009081 : branched chain family amino acid metabolism []
4	4	3	2	2	1	2	⊡ GO:0006551 : leucine metabolism [I]
4	4	3	2	2	1	2	□ GO:0009098 : leucine biosynthesis [I]
0	0	0	0	0	0	0	GO:0006552 : leucine catabolism [l]

VIMSS: Comparative Metabolic Maps

KEGG Metabolic Pathwavs Both Genomes Escherichia coli K12 Desulfovibrio vulgaris VALINE, LEUCINE AND ISOLEUCINE BIOSYNTHESIS Glycine serine and threonine metabolism 2-Hydroxyethyl-Ô2-Oxobutanoate 1.2.4.1 ThPP Pvruvate C 2.2.1.6 2.2.1.6 2.2.1.6 (S)-2-Aceto-2-ဂ်ံ(S)-2-Acetolactate hydroxybutanoate 1.1.1.86 5.4.99.3 1.1.1.86 5.4.99.3 Pvruvate (R)-3-Hydroxy-3-methyl-(S)-2-Hydroxy-3-methylmetabolism 2-oxobutanoate 3-oxopentanoate 1.1.1.86 1.1.1.86 (R)-2,3-Dihydroxy-(R)-2,3-Dihydroxy-3-methylpentanoate 3-methylbutanoate 4.2.1.9 4.2.1.9 2-Isopropylmaleate (R)-2-Oxo-3-methyl-3-Isopropylmalate O-4.2.1.33 D-4 4.2.1.33 👌 2-O xoisovalerate 2.3.3.13 pentanoate 2-Isopropyl-2.6.1.6 2.6.1.42 2.6.1.6 malate 1.1.1.85 2.6.1.42 1.4.1.9 2.6.1.66 1.4.1.9 2-Oxo-4-methyl-3carboxypentanoate Ó L-Valine 🖒 L-Isole ucine 6.1.1.5 4-Methyl-6.1.1.9 2-oxopentanoate Ó L-Val-tRNA(Val) O L-Ile-tRNA(Ile) 2.6.1.6 2.6.1.42 1.4.1.9 L-Leucine Ó Q. Ò Protein Protein 6.1.1.4 L-Leu-tRNA(Leu) 🖒 Valine, leucine and isoleucine degradation

00290 2/25/03

O Protein

VIMSS: Workbench

Your Genes of Interest

VIMSS Id	Name	Organism	Remove?
14219	leuB	Escherichia coli K12	Remove
39363	leuB	Bacillus subtilis	Remove
203316	leuB	Shewanella oneidensis MR-1	Remove
208498	leuB	Desulfovibrio vulgaris	Remove
383193	ORF04768	Geobacter sulfurreducens PCA	Remove
393808		Desulfovibrio desulfuricans G20	Remove
379519		Geobacter metallireducens	Remove

Retrieve Data

open-source biology

VIMSS: Towards Integration with Pathway/Simulation Tools

