New Insights into the Mechanism of Bacterial Metal Respiration

Thomas J. DiChristina School of Biology Georgia Tech

- Fe: Charles Moore, Carolyn Haller, David Bates
- Mn: Brian Burnes, Karen Sankovich
- U: Roy Wade, Jason Dale
- Se: Ellen Taratus, Sean Eubanks
- Tc: Amanda Payne

PROJECT GOAL

Identify genes and gene products required for microbial metal reduction

- Reductive dissolution of **iron**
- Reductive dissolution of manganese
- Reductive precipitation of selenium
- Reductive precipitation of uranium
- Reductive precipitation of technetium

Model Metal Reducing Bacteria:

Shewanella putrefaciens strain 200 *Shewanella oneidensis* strain MR-1

Shewanella Respiratory Capability

Electron Donors:

Organic acids Amino acids Sugars Hydrogen **Electron Acceptors:** Oxygen $[O_2]$ Nitrogen compounds [NO₃⁻, NO₂⁻, NO] Manganese oxides [Mn⁴⁺, Mn³⁺] Ferric iron [Fe³⁺] Sulfur compounds $[SO_3^{2-}, S_2O_3^{2-}, S(0), DMSO]$ Uranium [U⁶⁺] Technetium [Tc⁷⁺, Tc⁴⁺] Selenium [Se⁴⁺] Trimethylamine-N-oxide [TMAO] **Fumarate** AQDS (electron shuttle) Others: Arsenate, Chromate, Vanadate, Neptunium(V), Deaminated histidine, Phenazines

EXPERIMENTAL STRATEGY

Genetic complementation analysis of metal reduction-specific mutants

- 1. Mutagenize WT via chemical or transposon mutagenesis
- 2. Identify metal reduction-specific mutants
- 3. Mobilize WT gene clone bank into mutants
- 4. Identify transconjugates with restored metal reduction capability
- 5. Subclone, analyze nucleotide sequence of complementing gene

Random Mutagenesis

1. Metal reduction-specific

2. High-throughput (may need to screen 20,000)

Clarke-Carbon equation:

P = probability of identifying mutant (99%) f = absolute frequency (1/4000 genes) N = number of random mutants that must be screened to ensure a 99% probability of identifying mutant in 4000 gene chromosome if phenotype encoded by one gene: N = 20,000

• red ping pong ball analogy

Microbial Fe(III) respiration

Physiological problem associated with Fe(III) respiration

Problem:

Anaerobic respiration on insoluble electron acceptor

Potential solutions:

- 1. Transport Fe(III) in
- 2. Transport Fe(III) reductase out
- 3. Exogenous electron shuttles
- 4. Endogenous electron shuttles

Ferrozine spray

Before spray

After spray

TSI Agar Phenotype

AGR phenotype

AGR mutant phenotype

WORKING HYPOTHESIS:

Fe(III)-reducing *Shewanella* employ a Type II protein secretion system to target the Fe(III) terminal reductase to the outside face of the outer membrane where it transfers electrons to insoluble Fe(III) substrates

- Delete gspD in S. oneidensis MR-1
- 0.5 M KCI wash to detach peripheral proteins from outside face of outer membrane of wild-type and $\Delta gspD$.
- Compare profiles of Fe(III) reductases attached to periphery of wild-type and ΔgspD mutant.
- Isolate and ID Fe(III) reductase from wild-type strain (missing in $\Delta gspD$)

Type II Secretion Genes in *S. oneidensis* MR-1 genome

pulC 1 X 10⁻⁵¹ A. salmonicida exeC 39% 55% * pulD 70% 0.0 V. cholera epsD 53% pulE V. cholera epsE **69**% 81% 0.0 pulF 1 X 10⁻¹³² A. hydrophila exeF **63**% 77% A. hydrophila exeG pulG 77% 88% 1 X 10⁻⁵⁹ 53% 2 X 10⁻²¹ A. hydrophila exeH pulH 32% 2 X 10⁻¹⁵ A. hydrophila exel 33% 54% pull A. hydrophila exeJ 1 X 10⁻³⁴ pulJ 39% 57% A. hydrophila exeK 2 X 10⁻⁵⁵ pulK 40% **58**% A. hydrophila exeL **58**% 1 X 10-75 pulL 42% pulM A. hydrophila exeM 41% **66**% 1 X 10⁻³¹ pulN 27% 44% 3 X 10⁻²³ A. hydrophila exeN

BLAST Results of predicted *S. putrefaciens* strain MR-1 Type II genes

Fe(III) reductase missing from peripheral proteins detached from outside face of *S. oneidensis* MR-1 outer membrane

MALDI-TOF MS analysis of polypeptides in Fe(III) reductase complex of *S. oneidensis* MR-1

- Five polypeptides
- First three polypeptides have been identified:
 - 1. Protease
 - 2. Omc B Decaheme *c*-type cytochrome
 - 3. SoxB Component of sulfur oxidation pathway (77% similar to *Vibrio parahaemolyticus* SoxB homolog)
- S. oneidensis MR-1 genome contains a full complement of Vibrio-like sox homologs (A - H) (but not known to oxidize S).
- Possible evolutionary link between microbial Fe(III) reduction and S oxidation?

Model No. 1. Direct contact

Addition of exogenous electron shuttle AQDS overcomes Fe(III) and Mn(IV) reduction deficiency of *S. oneidensis* Type II secretion mutants

Model 4. Exogenous electron shuttle

• Note Type II secretion system and OM-targeted Fe(III) reductase are missing in *gspD* mutant.

 Facilitates identification of AQDS reductase in *gspD* mutant background [I.e., Fe(III) reduction activity solely due to AQDS reduction].

Identification of AQDS shuttle genes0 hr24 hr200 gspEMR HK gspD200 gspEMR HKgspD

HFO + AQDS

Microbial Mn(IV) Respiration

WORKING HYPOTHESIS:

Mn(IV) reduction proceeds step-wise via two successive one-electron transfer reactions catalyzed by separate Mn(IV) and Mn(III) reductases

Mn(IV) Reduction:

 $Mn^{4+} \longrightarrow Mn^{3+} \longrightarrow Mn^{2+}$ $Mn^{(II)} Oxidation:$ $Mn^{2+} \longrightarrow Mn^{3+} \longrightarrow Mn^{4+}$ (DFO trap; Tebo)

Mn(III) Reduction

soluble, clear

 Mn^{2+}

- Mn(III) reduction-deficient mutant screening technique (WT = clearing zone)
- EMS and *Tn*5 mutagenesis
- Genetic complementation analysis with MR-1 clone bank
- Identify genes required for Mn(III) reduction
- Do Mn(III) reduction-deficient mutants grow anaerobically on Mn(IV)?

Microbial U(VI) Respiration

Anaerobic Respiratory Capability of Uranium Reduction-deficient Mutants of *S. putrefaciens* 200

+ growth; - no growth

WORKING HYPOTHESIS:

The U(VI) and NO₂⁻ reduction systems of Shewanella share common respiratory chain components, possibly including the terminal NO₂⁻ reductase itself

Three types of energy-transducing bacterial NO₂⁻ reductases

Denitrification:

1. Cu-containing Nirk $NO_2^- \rightarrow NO$ 2. cytochrome cd_1 NirS $NO_2^- \rightarrow NO$

Dissimilatory nitrate ammonification:

- 3. NrfA: cytochrome c_{552} NO₂⁻ \rightarrow NH₃ \downarrow SO₃²⁻ \rightarrow S²⁻ *S. oneidensis* genome scan:
- *E. coli*-like NrfA homolog was detected (79% similar)
- Generate △*nrfA* deletion mutant, test for U(VI) reduction

S. oneidensis $\triangle nrfA$ deletion mutant displays a U(VI) reduction-deficient phenotype on U(VI) reduction plate screen

S. oneidensis $\triangle nrfA$ deletion mutant is severely impaired in U(VI) reduction activity in anaerobic liquid culture

Microbial Tc(VII) Reduction

Technetium reduction Tc⁷⁺ Tc⁴⁺ clear, soluble black precipitate

• Jon Lloyd (1997): Tc⁷⁺ reduced by *E.coli* HycE (H₂-evolving Ni/Fe H₂ase of formate hydrogen lyase complex)

• De Luca (2001): Tc⁷⁺ reduced by Ni/Fe H₂ase of SRB *Desulfovibrio fructosovorans*

• *S. oneidensis* MR-1 genome contains two *Wolinella*- and *Thermotoga*-like hydrogenases that do not display homology to above hydrogenases.
Identification of Tc(VII) reduction-deficient mutants

....and Tc9 retains ability to respire all other TEAs

Tc(VII) Reduction in 50 mM Bicarbonate Buffer

WORKING HYPOTHESIS:

Tc(VII) reduction proceeds step-wise via two successive electron transfer reactions catalyzed by separate Tc(VII) and Tc(IV) reductases

Tc(VII) Reduction:

 $Tc^{7+} \longrightarrow Tc^{4+} \longrightarrow Tc^{3+}$ Tc(III) Oxidation: $Tc^{3+} \longrightarrow Tc^{4+} \longrightarrow Tc^{7+}$

Tc9 T121 200-2 M-2 200-4 M-4

Rapid screen for identification of Tc(IV) reduction-deficient mutants:

Mutagenize and identify mutants which remain pink-colored

Take Home Messages

1. Fe(III) reduction

- Fe(III) reductase targeted to cell periphery via Type II protein secretion system in all *Shewanella*
- Fe(III) reductase complex may include protease, *c*-type cytochrome and component of S oxidation
- reduction of exogenous electron shuttle AQDS

2. Mn(IV) reduction

- Also requires Type II protein secretion system
- Two successive one electron transfer steps via Mn(III) reductase

3. U(VI) reduction

• Nitrite reductase NrfA is involved in U(VI) reduction

4. Tc(VII) reduction

- Electron donor-dependent
- Two successive electron transfer steps via Tc(IV) reductase

NrfA is highly conserved between species

_								
NKPF	RGHAFAVTDV	RETLRTGAP	KNAEDGPI	PMACWSCK	SPDVAR	LIQKDG	EDGYE	HG-KW
NKPF	RGHAYAVTDV	RETLRTGAP	KTAEDGPI	PMACWSCK	SPDVAR	LIQQEG	EDGYE	HG-KW
KAPF	RGHMYAVTDV	RNTLRTGAP	KNAEDGPI	PMACWSCK	SPDVPR	RLIEEQG	EDGYI	KG-KW
VICN	MRPMYAIPYV	QVRLKTR	KTAHO	QWACWSCK	SPDVPR	RLIEEQG	GRRLI	SKVSG
NAPP	RGHYYALQDN	INTLRTGAP	VDGKTGPI	PSACWTCK	SPDVPF	RIIEQDG	ELEYP	TG-KW
NSPF	RGHYYALQDN	VNSLRTGAP	VDAKTGPI	PTACWTCK	SPDVPR	RLIEEDG	ELEYE	TG-KW
-	. * .	* - *		*** • **	**** *			
-		A DECEMBER OF		Contraction of the second				
	2							3
TVNN	LICCADCHN	ASPEFAKGK	PELTLSRE	YAARAMEA	IG-KPH	EKAGRE	DOOSM	NCGOC
IVNI	LGCADCHNT	ASDDFAOGK	PALTLSRE	YAERAMEA	IG-KPH	DKAGRE	DOOSN	NCGOC
VTNT	FIGCSDCHE-	KGS	PKLRISRE	YVDRALDA	IG-TPH	SKASKO	DKESM	IVCAOC
VTNZ	AIGCGDCHD-	KGS	PKLRISRE	YVDRALDA	IG-TPH	SKASKQ	DKESM	IVCAQC
IVNI	TIGCYNCHD-	DKS	AELKSKVE	YLDRGLSA	AGEKTH	AESTHO	EKRSI	VCAQC
IVNI	VIGCANCHD-	DKT	AELKVRVE	PHLNRGLQA	AGLKTH	TEESTHO	DKRTI	VCAQC
-		-					1252 252	** **
100	18 7 10 10 H B B B 4						1	100 M 100 M
DGKI	NKA	VKFPW	DDGMK	VENME	QYYDK	AFSDWT	NSLSI	TPMLK
DGKI DGKI	VKA	VKFPW	DDGMK	VENME	QYYDKI QYYDTI	AFSDWT	NSLSP	TPMLK
DGKI DGKI EKKI	NKA NKA EDKKG	VKFPW VKFPW FVKFPW	DDGMK DEGMK DMGVT	VENME	QYYDKI QYYDTI VYYDGI	AFSDWT AFSDWT LEFSDWT	NSLSF NSLSF HALSF	TPMLK TPMLK TPMLK
DGKI DGKI EKKI EKTI	NKA NKA EDKKG EDKKG	VKFPW FVKFPW FVKFPW FVKFPW	DDGMK DEGMK DMGVT DMGVT	VENME VENME VDQME VEKME	QYYDKI QYYDTI VYYDGI VYYDGI	AFSDWT AFSDWT IEFSDWT NPILR-1	NSLSP NSLSP HALSP	CTPMLK CTPMLK CTPMLK STNVK
DGKI DGKI EKKI EKTI KKTI	NKA EDKKG EDKKG EWKDDK <mark>G</mark> VDK	VKFPW VKFPW FVKFPW TAMVVTLPW	DDGMK DEGMK DMGVT DMGVT ISKGIS	VENME VENME VDQME VEKME TEQME	QYYDKI QYYDTI VYYDGI VYYDGI VYYDSI AYYDEI	AFSDWT AFSDWT EFSDWT PILR-L INFADWT	NSLSK NSLSK HALSH DECT HGISH	(TPMLK (TPMLK (TPMLK (TPMLK (TPMLK
DGKI DGKI EKKI EKTI KKTI KKTI	VKA VKA DKKG EDKKG EWKDDKGVDK EWKDAKGADK	VKFPW VKFPW FVKFPW TAMVVTLPW TAMVVTLPW	DDGMK DEGMK DMGVT DMGVT SKGIS ANGVGKD0	VENME VENME VDQME VEKME TEQME SNAGVEGMI	QYYDK QYYDT VYYDG VYYDG XYYDE AYYDE KYYDE	AFSDWT AFSDWT EFSDWT PILR-L INFADWT INFSDWT	NSLSK NSLSK HALSK DECT HGISK HNISK	(TPMLK (TPMLK (TPMLK STNVK (TPMLK (TPMLK
DGKI DGKI EKKI EKTI KKTI KKTI	NKA VKA DKKG EDKKG EWKDDKGVDK EWKDAKGADK	VKFPW VKFPW FVKFPW TAMVVTLPW TAMVVTLPW *.:**	DDGMK DEGMK DMGVT IDMGVT ISKGIS IANGVGKDO	VENME VENME VEKME TEQME GNAGVEGMI .: *	QYYDKI QYYDTI VYYDGI VYYDGI XYYDEI KYYDEI ***	IAFSDWT IAFSDWT IEFSDWT IPILR-L INFADWT INFSDWT	NSLSK NSLSK HALSK DECTV HGISK HNISK	(TPMLK (TPMLK (TPMLK (TPMLK (TPMLK :. :*
DGKI DGKI EKKI EKTI KKTI KKTI	NKA SDKKG EDKKG EWKDDK <mark>G</mark> VDK EWKDAKGADK	VKFPW FVKFPW FVKFPW TAMVVTLPW TAMVVTLPW *.:** 4	DDGMK DEGMK DMGVT DMGVT ISKGIS ANGVGKDO	VENME VENME VQQME VEKME TEQME GNAGVEGMI .: *	QYYDK QYYDT QYYDG VYYDG XYYDE XYYDE KYYDE ***	AFSDWT IAFSDWT IEFSDWT IPILR-L INFADWT INFSDWT	NSLSP NSLSP HALSP DECTA HGISP HNISP	(TPMLK (TPMLK (TPMLK STNVK (TPMLK (TPMLK :. :*
DGKI DGKI EKKI EKTI KKTI KKTI	NKA NKA EDKKG EDKKG EWKDDKGVDK EWKDAKGADK	VKFPW FVKFPW TAMVVTLPW TAMVVTLPW *.:** 4	DDGMK DEGMK DMGVT ISKGIS IANGVGKDO *:	VENME VENME VEKME TEQME SNAGVEGMI .: *	QYYDKI QYYDTI VYYDGI VYYDGI XYYDEI KYYDEI ***	AFSDWT AFSDWT IEFSDWT INFADWT INFSDWT	NSLSP NSLSP HALSP HGISP HNISP	CT PMLK CT PMLK STNVK STNVK CT PMLK CT PMLK :. :*
DGKI DGKI EKKI EKTI KKTI KKTI	NKA NKA EDKKG EDKKG EWKDDKGVDK EWKDAKGADK : TAGIHGKNNV SAGIHGKNNV	VKFPW FVKFPW TAMVVTLPW TAMVVTLPW *.:** 4 TCIDCHMPK	DDGMK DEGMK DMGVT ISKGIS IANGVGKDO *: VQNAEGKI	VENME VENME VEKME TEQME SNAGVEGMI .: * .yTDHKIG- .yTDHKIG-	QYYDKI QYYDTI VYYDGI VYYDGI XYYDEI KYYDEI *** NPFDNI	AFSDWT AFSDWT EFSDWT INFADWT INFSDWT : FAQTCAN FAQTCAN	NSLSP NSLSP HALSP DPCTV HGISP HNISP	CTPMLK CTPMLK STNVK CTPMLK CTPMLK :.:*
DGKI DGKI EKKI EKTI KKTI KKTI	NKA DKKG EDKKG EWKDDKGVDK EWKDAKGADK : TAGIHGKNNV SAGIHGKNNV	VKFPW FVKFPW TAMVVTLPW TAMVVTLPW *.:** 4 TCIDCHMPK TCIDCHMPK	DDGMK DEGMK DMGVT ISKGIS IANGVGKDO *: VQNAEGKI VQNAEGKI	VENME VENME VEKME TEQME SNAGVEGMI .: * .yTDHKIG- .yTDHKIG- .yTDHKIG-	QYYDKI QYYDTI VYYDGI VYYDGI VYYDGI XYYDEI KYYDEI *** NPFDNI NPFDNI NPFDNI	AFSDWT AFSDWT EFSDWT INFADWT INFADWT : FAQTCAN FAQTCAN FEETCAI	NSLSP NSLSP HALSP DPCTV HGISP HNISP 	CTPMLK CTPMLK STNVK CTPMLK CTPMLK :. :* OKAALQ DKAALQ DKAALQ
DGKI DGKI EKKI EKTI KKTI KKTI ETWI ETWI KLGI	NKA SDKKG EDKKG EWKDDKGVDK EWKDAKGADK SAGIHGKNNV SAGIHGKNNV KMGIHGKNNV KMGIHGKNNV	VKFPW FVKFPW TAMVVTLPW *.:** 4 TCIDCHMPK TCIDCHMPK SCVDCHMPK	DDGMK DEGMK DMGVT ISKGIS IANGVGKDO *: VQNAEGKI VQNAEGKI VVTSPEGKI	VENME VENME VEKME TEQME SNAGVEGMI .: * .yTDHKIG- .yTDHKIG- .yTDHKIG- .yTDHKIG- .yTDHKIG-	NPFDNI NPFDNI NPFDRI	AFSDWT AFSDWT EFSDWT INFADWT INFADWT : FAQTCAN FAQTCAN FEETCAI	NSLSK NSLSK HALSK HGISK HGISK HNISK CHTQI CHTQI CHTQI CHTQI CHSQI	CTPMLK CTPMLK STNVK CTPMLK CTPMLK :. :* OKAALQ OKAALQ DKAALQ DKASLQ
DGKI DGKI EKKI EKKI KKTI KKTI ETWI ETWI KLGI ELYI	NKA SDKKG EDKKG EWKDDKGVDK EWKDAKGADK SAGIHGKNNV SAGIHGKNNV KMGIHGKNNV KMGIHGMNNV	VKFPW FVKFPW TAMVVTLPW *.:** 4 TCIDCHMPK TCIDCHMPK SCVDCHMPK SCVDCHMPK	DDGMK DEGMK DMGVT ISKGIS	VENME VENME VEKME TEQME SNAGVEGMI .: * .: * .YTDHKIG- .YTDHKIG- .YTDHKIG- .YTDHKVG- .YSDHKVG-	NPFDNI NPFDNI NPFDNI NPFDRI NPFDRI	AFSDWT AFSDWT EFSDWT INFADWT INFSDWT : FAQTCAN FAQTCAN FEETCAI FEETCAI	NSLSK NSLSK HALSK HGISK HGISK HNISK 	TPMLK TPMLK TPMLK TPMLK TPMLK :. :* OKAALQ OKAALQ OKASLQ FKEFL SEQKLK
DGKI DGKI EKKI EKTI KKTI KKTI ETWI ETWI KLGI ELYI EFWI	NKA NKA EDKKG EDKKG EWKDDKGVDK EWKDAKGADK EWKDAKGADK SAGIHGKNNV SAGIHGKNNV KMGIHGKNNV KMGIHGMNV KMGIHGQKGV	VKFPW FVKFPW TAMVVTLPW TAMVVTLPW *.:** 4 TCIDCHMPK SCVDCHMPK SCVDCHMPK SCADCHMPY SCADCHMPY	DDGMK DEGMK DMGVT SKGIS IANGVGKDO *: VQNAEGKI VQNAEGKI VTSPEGKI VTSPEGKI TQEGAVK- TQEGSVK-	VENME VENME VENME VEKME TEQME SNAGVEGMI .: * .: * .: * .: .: .: .: .: .: .: .: .: .: .: .: .:	NPFDNI NPFDNI NPFDNI NPFDNI NPFDNI NPFDRI NPFDRI NPLDNI	AFSDWT AFSDWT EFSDWT INFADWT INFSDWT : FAQTCAN FAQTCAN FEETCAT FEETCAT MDKSCMN	NSLSK HALSK HALSK HGISK HNISK HNISK CHTQI CHTQI CHTQI CHTQI CHSQI CHRSS ICHRES	TPMLK TPMLK TPMLK TPMLK TPMLK :. :* OKAALQ OKAALQ OKASLQ FKEFLV FKEFLS SEQKLF SESKLF
DGKI DGKI EKKI EKTI KKTI KKTI ETWI ETWI KLGI ELYI EFWI	NKA NKA EDKKG EDKKG WKDDKGVDK EWKDAKGADK EWKDAKGADK SAGIHGKNNV KMGIHGKNNV KMGIHGKNNV KMGIHGKNNV KMGIHGQKGV	VKFPW FVKFPW TAMVVTLPW TAMVVTLPW *::** 4 TCIDCHMPK SCVDCHMPK SCVDCHMPK SCADCHMPY	DDGMK DEGMK DMGVT SKGIS SKGIS ANGVGKDO *: VQNAEGKI VQNAEGKI VVSADGKI TQEGAVK- TQEGAVK-	VENME VENME VEKME TEQME SNAGVEGMI .: * .: * .YTDHKIG- .YTDHKIG- .YTDHKIG- .YTDHKVG- .YSDHKVG- .YSDHQVKE	QYYDKI QYYDTI QYYDGI VYYDGI XYYDEI XYYDEI XYYDEI XYYDEI XYPEDNI NPFDNI NPFDNI NPFDNI NPFDNI NPFDNI NPFDNI	AFSDWT AFSDWT EFSDWT IPILR-L INFADWT INFSDWT : FAQTCAN FAQTCAN FEETCAT FEETCAT MDKSCMM	NSLSH HALSH HALSH HGISH HNISH HNISH CHTQI CHTQI CHSQ1 CHSQ1 CHRES ICHRES	TPMLK TPMLK TPMLK TPMLK TPMLK TPMLK TPMLK :. :* OKAALQ OKAALQ OKASLQ FKEFL SEQKLR SESKLF

Nucleotide sequence analysis of DNA fragment complementing B31

	Gene	Identity	Positive	Expect	Translated product (best hit)
		U		-	-
	ferD'	57%	70%	8 X 10 ⁻⁷⁰	V. cholera epsD
*	ferE	75%	87%	0.0	A. hydrophila exeE
	ferF	56%	69%	1 X 10 ⁻¹¹⁴	A. hydrophila exeF
	ferG	41%	55%	4 X 10 ⁻¹³	E. carotovora outG
			*		
	forD'		forF		for E for C

Manganese Reduction

MnO₂ – Mn²⁺

Insoluble, black precipitate soluble, toxic

• Screened 10,000 *Tn*5-mutagenized colonies for Mn(IV) reduction activity

- Identified 34 putative Mnr mutants
- 32 of the 34 Mnr mutants displayed multiple respiratory deficiencies.

• Two Mnr mutants (D1 and C9) were deficient in Mn(IV) respiration, yet retained the ability to respire all other terminal electron acceptors, including Fe(III).

Anaerobic growth on Mn(IV)

Genetic analysis of Mnr mutant D1

- *Tn*5 inserted in an ORF displaying 46% similarity to the *Alcaligenes eutrophus* cation efflux protein CzcD.
- A. eutrophus CzcD is involved in regulation of the proton/divalent cation antiporter CzcCBA that mediates resistance to Co²⁺, Zn²⁺ and Cd²⁺.
- S. oneidensis contains a full complement of czc genes (CBA, DRS, IN) with 42 - 58% similarity to the A. eutrophus homologs.

WORKING HYPOTHESIS:

S. putrefaciens employs a Czc-like proton/divalent cation antiporter to efflux Mn²⁺ that otherwise accumulates intracellularly to toxic levels during anaerobic Mn(IV) respiration

Divalent metal cations Co²⁺, Zn²⁺, Cd²⁺ and Mn²⁺ inhibit growth and accumulate in *czcD* mutant of *S. putrefaciens* 200

Experimental design:

- Grow WT and *czcD* mutant in the presence of increasing concentrations of divalent cations.
- Compare minimum inhibitory concentration of divalent cations in WT to *czcD* mutant.
- Measure divalent cation accumulation in cytoplasm of WT and czcD mutant via atomic absorption spectroscopy.

Figure 25 Minimum inhibitory concentrations (MIC) of strain 200 MNRD1 to Co(II), Zn(II), Cd(II), and Mn(II)

Fe(III) reductase accumulates in the periplasmic space of Type II protein secretion mutants of *S. putrefaciens* 200

Heme stain of outer membrane (OM), inner membrane(IM) and soluble (Sol) fractions of *S. putrefaciens* 200 WT and *ferE* mutant B31

S. oneidensis Nrf homologies

Nrf	Function	MR-1	E Value	% Identity	
		Hits			
А	c_{552} Nitrite Reductase	1	e ⁻¹⁷²	63 (79% s	(imilar
В	<i>c</i> -type pentaheme cytochrome	4	$e^{-12} - e^{-14}$	29-34	
С	Fe-S Protein	6	$e^{-17} - e^{-61}$	30-56	
D	NADH quinone	3	e ⁻³⁴ - e ⁻⁵⁴	29-38	
Е	cytochrome assembly	2	e ⁻⁴⁰ - e ⁻⁵⁴	30-34	
F	cytochrome assembly	2	e ⁻¹² - e ⁻²¹	38-52	
G	cytochrome synthesis / assembly	2	$e^{-14} - e^{-26}$	33-39	
Η	transmembrane <i>c</i> -type (NapC/NirT family) cytochrome (reduces NrfA of <i>Wolinella</i>)	0	n/a	n/a	
Ι	heme delivery in periplasm	0	n/a	n/a	
J	assembly/synthesis (ccsA and ResA-like)	0	n/a	n/a	

Selenite reduction

Respiratory capability of Ser mutants

Strain	02	Se(IV)	Fe ³⁺	TMAO	Fum	NO ₂ -	NO3-	SO3 ²⁻	S2O3 ²	Mn ⁴⁺
WT	+	+	+	+	+	+	+	+	+	+
T121	+		•		•	-	-		-	•
Ser84	+		-	-	-	-		•	-	-
Ser109	+		-	÷	•		=		-	-
Ser229	+		+	+	-	ш	-	+	+	+
Ser232	+		+	+		i n		+	+	+

Model 2. Endogenous Fe(III) Chelator

Fe(III) reduction is inhibited by chelating compounds with strong Fe(III) binding capability

Model 3. Exogenous Fe(III) Chelator

Model No. 4 Endogenous electron shuttle

not detected

Microbially-driven Fenton reaction for pentachlorophenol degradation

Chloroorganic (mg/L) or Fe(II) mM

Color Image 1. Actual Tcr screening plate used to identify Tc(VII) reductiondeficient mutant Tc9 [row 6, column 2]. Colonies resulting from EMS-treated cells were grown under microaerobic conditions for 2 days at 30°C on agar growth medium supplemented with 125 μ M Tc(VII). Note black Tc(IV) precipitate on colony surface of all strains except Tc9 and negative control strain T121 [row 1, column 3]. Positive control strain [wild-type *S. oneidensis* MR-1] is located at row 9, column 1.

Color Image 3. Tc(VII) reduction phenotypes of *S. oneidensis* strains MR-1 [wild-type] and *gspD*⁻ [Fe(III) reduction-deficient type II secretion mutant] and *S. putrefaciens* strains 200 [wild-type], T121 [anaerobic respiratory mutant], *gspE*⁻ [Fe(III) reduction-deficient type II secretion mutant] and U14 [U(VI) reduction-deficient mutant]. Strains were grown under microaerobic conditions for 2 days at 30°C on agar growth medium supplemented with 125 μ M Tc(VII). Note black Tc(IV) precipitate on colony surface of all strains except T121 [previously found to lack the ability to respire anaerobically on any electron acceptor].

Color Image 8. Recombinant PCR strategy for deletion mutagenesis. Top - Three DNA fragments were amplified independently: a tetracyclineresistance cassette *tetA*, and the upstream and downstream sequences of nrfA. Primers NRPD3 and NRPD4 were designed so that their products hybridized with either end of the upstream and downstream sequences of nrfA. THe three sequences were combined as templates for recombinant PCR to generate a linear fragment of 2.7 kb. The final product was cloned into suicide vector pNTPS139 for gene replacement. Bottom - Primers used for amplification.

Name	Sequence (5' 8 3')	Use
NRPD1	GCCTACAGGGCCCGAACCCTTCTGGCAGCAT	PCR amplification of sequence
NRPD2	GGCGCGAAGCGACTTACAAGTAATC	upstream of <i>nrfA</i> , includes 5' <i>Apa</i> I recognition sequence.
NRPD3	GATTACTTGTAAGTCGCTTCGCGCCTTATCCGGT AACTATCGT	PCR amplification of the <i>tetA</i> gene from pACY184
NRPD4	GCATTAAGTGCATTGGTTGCCGGAGTGGTGAAT CCGTTAGC	
NRPD5	CCGGCAACCAATGCACTTAATGC	PCR amplification of the sequence
NRPD6	GCCTACAACTAGTGCGTGTTTTCAAACTCGGTG	downstream of <i>nrfA</i> , includes 3' <i>Spe</i> I recognition sequence.

S. oneidensis △*nrfA* deletion mutant displays a U(VI) reduction-deficient phenotype

• Derek Lovley (1993): U(VI) and Cr(VI) reduced in vitro by cytochrome c_3 of *Desulfovibrio vulgaris*

• Judy Wall (2002): U(VI) reduced in vivo by cytochrome c_3 of *Desulfovibrio desulfuricans*

• *S. oneidensis* MR-1 genome contains SRB-like cytochrome c_3 , but Δc_3 deletion mutant retains U(VI) reduction activity

Identification of Fe(III) reduction-specific genes

Screened 15,000 mutagenized colonies via ferrozine spray, TSI and AGR assays

Identified 72 Fer mutants

Tested each for anaerobic respiration on suite of 10 alternate TEAs

57 displayed multiple respiratory deficiencies

15 were deficient in Fe(III) and Mn(IV) respiration, yet retained ability to respire all other TEAs

All 15 Fer mutants were reactivated for Fe(III) reduction by an identical 23 kb *Hin*dIII DNA fragment)

Subcloned B31 and identified complementing gene

KCI wash to detach peripheral proteins from cell
gspEWT-Fe WT-O2B31-2S2S-CB312S-A2S-BFerRNative-PAGE
Ferrozine stainFe(III) reductase is missing from periphery of gspE• Fe(III) reductase is missing from periphery of gspE
mutant B31

WT-Fe WT-O2 B31-2S 2S-C B31 2S-A 2S-B FerR

SDS-PAGE heme stain

• Fe(III) reductase contains heme (cytochrome c?)

 18 amino acid N-terminal sequence of heme-positive Fe(III) reductase displayed no significant homology to any predicted protein-encoding ORF in database (including conserved hypotheticals). Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF BIOTECHNOLOGY AND BIOENGINEERING 80 (6): 637-649 DEC 20 2002

- NrfA is located in periplasmic space of *E. coli*, *W. succinogenes* and *Sulfurospirillum deleyianum*
- Accumulation of U(IV) in periplasmic space of *S. putrefaciens* CN32

Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF BIOTECHNOLOGY AND BIOENGINEERING 80 (6): 637-649 DEC 20 2002

 Tc(IV) accumulates in periplasmic space of *S. putrefaciens* CN32

• Tc(VII) reductase located in periplasmic space of *S. oneidensis* MR-1?

Shewanella oneidensis MR-1

- isolated from Oneida Lake by Ken Nealson's group in 1988
- anaerobic respiratory capability identical to *S. putrefaciens* 200
- MR-1 genome sequenced by DOE-JGI in 2002
- 4,758 ORFs (46% NOT assigned biological function, 22% conserved hypotheticals, 24% unique); 32% most similar to *Vibrio cholera* genes
- 39 *c*-type cytochromes, including 8 that contain 10 hemes each
- 3 of the 8 decahemes are located in OM

Crystal structure of *Sulfurospirillum deleyianum* **NrfA**

(Einsle et al., 1999)

- homodimer with 5 close-packed hemes per monomer
- orientation of 5 heme groups is nearly identical to hydroxylamine oxidoreductase of *Nitrosomonas europaea* (NH₂OH oxidized to NO₂-)
- active site heme of NrfA is lysinecoordinated as opposed to histidinecoordinated HAO in *N. europaea* (electron sink as opposed to electron donor)
- electropositive entrance channel for NO_2^- and electronegative exit channel for NH_4^+
- nrfA deleted from S. oneidensis chromosome

Restoration of U(VI) reduction capability to Urr mutant U14

Transconjugant U14-D14 with restored U(VI) reduction capability

 Currently subcloning complementing DNA fragment

Tc9 retains ability to respire all other TEAs

S. oneidensis genome scan

S. oneidensis

- Cu-containing and cytochrome cd₁ (NirK/S) homologs were not detected
- W. succinogenes-like NrfH J homologs were not detected
- *E. coli*-like NrfA G homologs were detected but scattered throughout genome (79% similar)
KCI wash to detach peripheral proteins from cell surface of WT and *gspE* WT-Fe WT-O2 B31-2S 2S-C B31 2S-A 2S-B FerR Native-PAGE Ferrozine stain Fe(III) reductase is missing from periphery of gspE mutant B31 WT-Fe WT-O2 B31-2S 2S-C B31 2S-A 2S-B FerR SDS-PAGE heme stain

• Fe(III) reductase contains heme (cytochrome c?)

2003 - Repeat in Shewanella oneidensis MR-1