Reaction-Based Reactive Transport Modeling of Biological Iron(III) Reduction

Bill Burgos

Department of Civil and Environmental Engineering The Pennsylvania State University

Acknowledgements:

Eric Roden – The University of Alabama George Yeh – University of Central Florida Brian Dempsey – The Pennsylvania State University Morgan Minyard – The Pennsylvania State University

The University of Alabama Department of Biological Sciences

Mathematical Models

Reaction-based models – simulate and formulate the production-consumption rate of every chemical species due to every chemical reaction (both equilibrium and kinetic)

Ad hoc models - typically formulate only the rate of the most significant reaction as an empirical function fit to experimental data

Diagonalized Reaction-Based Models

Formal procedure - Gauss-Jordian elimination or QR decomposition - to separate M equations (needed to solve for M unknowns) into three subsets:

Mass Conservation Equations for Components

Mass Action Equations for Equilibrium Reactions

Kinetic-Variable Equations for Kinetic Reactions

Most Important! – in the absence of parallel kinetic reactions, all kinetic reactions are independent of each other for independent evaluation

Fang et al. 2003 Water Resources Res. 39:1083

Previous Demonstration/Validation

- Obtained rate formulations/parameters for kinetic reactions independently from batch experiments
- With no modifications, these rate equations were able to simulate parallel kinetic reactions during hematite-with-AQDS experiments

Burgos et al. 2003 Geochim. Cosmochim. Acta 67:2735

Current Demonstration/Validation

- Model and measure biological iron(III) reduction in natural sediments
- Obtain rate formulations/ parameters for kinetic reactions independently from batch experiments
- With no modifications, use rate equations to simulate biological iron(III) reduction in constructed column reactors

Proposed Reaction Network for Biological Iron(III) Reduction

4FeOOH + lactate ⁻ + 7H ⁺ \rightarrow 4Fe ²⁺ + acetate ⁻ + HCO ₃ ⁻ + 6H ₂ O	R1
FeOOH(bulk) \rightarrow =FeOOH(surf)	R2
Fe^{2+} + =FeOOH \rightarrow =FeOO-Fe ^{(II)+} + H ⁺	R3
HPIPES \rightarrow PIPES ⁻ + H ⁺	R4
M = 10 species, $N = 4$ reactions	

FeOOH bioreduction modeled as 1st-order with respect to "free surface sites"

Fe²⁺ sorption modeled as Freundlich isotherm

Constructed Column Experiments

- Eatontown hematite sand
- wet-packed columns with 10⁸ cells/mL *S. putrefaciens* CN32
- 1-cm dia, 7.5-cm bed length
- fed 5 mM Na-lactate in AGW
- effluent samples collected daily for 21 d, analyzed for Fe(II) and organic acids
- deconstructed columns analyzed for 0.5 N HCl Fe(II), and by Mossbauer spectroscopy

Bioreduction of Iron-Rich Coastal Sand

Bioreduction of Iron-Rich Coastal Sand

Bioreduction of Iron-Rich Coastal Sand

Hydrologic Effect on Biologic Activity

Iron(III) Reduction at low flow rates

10 d hydrologic residence time Q = 0.1 PV/d

Coupled Fe(III)/U(VI) Reduction

Roden et al. 2004 Environ. Sci. Technol., Submitted

Summary

- Biogenic flux increases as hydrologic residence time decreases
- Reaction-based reactive transport modeling can capture this effect
- Solid-phase Fe(III) bioreduction can be sustained at long residence times in natural sediments
- Long-term coupled Fe(III)/U(VI) bioreduction can be sustained in natural sediments

The University of Alabama Department of Biological Sciences

Future Directions

- Continuous refinement, improvement and expansion of reaction-based models
- Provide evidence for uranium immobilization in long-term, long-residence time, initially low DMRB-biomass FRC sediment columns
- Provide kinetic information on solid-phase reactants and products

The University of Alabama Department of Biological Sciences