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Mathematical Models

Reaction-based models – simulate and
formulate the production-consumption rate of
every chemical species due to every chemical
reaction (both equilibrium and kinetic)

Ad hoc models - typically formulate only the
rate of the most significant reaction as an
empirical function fit to experimental data



Diagonalized Reaction-Based Models

Formal procedure - Gauss-Jordian elimination or QR
decomposition - to separate M equations (needed to
solve for M unknowns) into three subsets:

Mass Conservation Equations for Components

Mass Action Equations for Equilibrium Reactions

Kinetic-Variable Equations for Kinetic Reactions

Most Important! – in the absence of parallel kinetic
reactions, all kinetic reactions are independent of each
other for independent evaluation

Fang et al. 2003 Water Resources Res.  39:1083



Previous Demonstration/Validation

• Obtained rate
formulations/parameters
for kinetic reactions
independently from
batch experiments

• With no modifications,
these rate equations
were able to simulate
parallel kinetic reactions
during hematite-with-
AQDS experiments

Burgos et al. 2003 Geochim. Cosmochim. Acta  67:2735
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Current Demonstration/Validation

• Model and measure biological
iron(III) reduction in natural
sediments

• Obtain rate formulations/
parameters for kinetic reactions
independently from batch
experiments

• With no modifications, use rate
equations to simulate biological
iron(III) reduction in
constructed column reactors

Constructed Column Results
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Proposed Reaction Network for
Biological Iron(III) Reduction

4FeOOH + lactate- + 7H+  4Fe2+ + acetate- + HCO3
- + 6H2O R1

FeOOH(bulk)  =FeOOH(surf) R2

Fe2+ +  =FeOOH   =FeOO-Fe (II)+ + H+ R3

HPIPES  PIPES- + H+ R4

M = 10 species, N = 4 reactions



FeOOH bioreduction modeled as 1st-order
with respect to “free surface sites”
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y = 1.059x + 1.1251

R2 = 0.9966
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Fe2+ sorption modeled as Freundlich isotherm

y = 0.4776x - 0.3012

R2 = 0.9124
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Constructed Column Experiments

• Eatontown hematite sand
• wet-packed columns with
   108 cells/mL S. putrefaciens CN32
• 1-cm dia, 7.5-cm bed length
• fed 5 mM Na-lactate in AGW
• effluent samples collected daily
   for 21 d, analyzed for Fe(II) and
   organic acids
• deconstructed columns analyzed
   for 0.5 N HCl Fe(II), and by
   Mossbauer spectroscopy



Bioreduction of Iron-Rich Coastal Sand
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Bioreduction of Iron-Rich Coastal Sand
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Bioreduction of Iron-Rich Coastal Sand
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Hydrologic Effect on Biologic Activity
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Iron(III) Reduction at low flow rates
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Coupled Fe(III)/U(VI) Reduction

1 d hydrologic residence time
Q = 1.0 PV/d

Oyster VA columns
108 cells/mL G. sulfurreducens
10 mM Na-acetate
10 uM U(VI)
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Summary

• Biogenic flux increases as hydrologic
   residence time decreases

• Reaction-based reactive transport
modeling can capture this effect

• Solid-phase Fe(III) bioreduction can be
sustained at long residence times in
natural sediments

• Long-term coupled Fe(III)/U(VI)
bioreduction can be sustained in natural
sediments

The University of Alabama

Department of Biological Sciences
UCF



Future Directions

• Continuous refinement, improvement and
expansion of reaction-based models

• Provide evidence for uranium immobilization
in long-term, long-residence time, initially
low DMRB-biomass FRC sediment columns

• Provide kinetic information on solid-phase
reactants and products
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