Stimulated In Situ Removal of U(VI) from a Uranium-Contaminated Aquifer

> R. Todd Anderson University of Massachusetts

Laboratory Studies

Acetate stimulates loss of soluble U(VI)

Stimulated loss of U(VI) is biological

Stimulated loss of U(VI) occurs under

 Depletion of nitrate is a pre-requisite for stimulated loss of U

Finneran, K.T., Anderson, R.T., Nevin, K.P., Lovley, D.R. 2002, *Soil and Sed. Contam.* 11:339-357
Finneran, K.T., Housewright, M.E., Lovley, D.R., 2002, *Environ. Microbiol.* 4: 510-516.

Detection and Evaluation of Geobacteraceae

80

Population Increase

Enrichment of Geobacteraceae

day 2 day 2 day 37 day 37 day 0 day 0 day 0 day 23 day 23 day 0 day 0 day 23 day 23 day 23 no acetateacetateno acetateacetate

Relative propor tions of organ isms in clone libraries from the three different sites. 3A. s ite 1103; 3B. site 857; 3C. site 853. Firmi cutes; Clostridium/Bacillus; Cytophag ales; Geobac teraceae; other delta pro teob acteria; gamm a pro teob acteria; Azoa rcus; dother beta pro teobac teria; alpha proteobac teria; other.

Holmes, D.E., Finneran, K.T., O'Neill, R.A., Lovley, D.R., 2002, *Appl. Environ. Microbiol.* 68:2300-2306

Laboratory Sediment Incubations

1) Acetate addition to aquifer sediments stimulates loss of soluble U(VI).

2) Stimulated loss of U(VI) in sediments is a biological process.

- 3) Loss of U(VI) from solution is associated with stimulated metal-reducing conditions in sediments.
- 4) Stimulated loss soluble U(VI) is associated with an enrichment in the sediment microbial community of *Geobacteraceae* organisms known to reduce Fe(III) and U(VI).

5) Removal of nitrate is a prerequisite for stimulated U(VI) removal

16S rDNA Clone Library Analysis

Days Since Beginning Acetate Injection

16S rDNA Clone Library Analysis

Day Since Beginning Acetate Injection

Zone of depleted Fe(III) near point of injection. Acetate completely consumed via stimulated sulfate reduction. Loss of U(VI) inhibited due to stimulated sulfate reduction.

Results of the 2002 *In Situ* Experiment Demonstrate:

- 1) Acetate addition stimulates the removal of U(VI) from the groundwater at the Old Rifle site.
- 2) U(VI) was removed from solution under stimulated Fe(III)-reducing conditions.
- 3) Molecular evidence obtained from groundwater samples indicates U(VI) removal was associated with an enrichment of *Geobacteraceae*.
- 4) Removal of U(VI) decreased upon the stimulation of sulfate reduction.- No known acetate-oxidizing sulfate reducers capable of U(VI) reduction.
- 5) Long term removal of soluble U(VI) from groundwater will require maintenance of Fe(III)-reducing conditions *in situ*.

Anderson, R.T. et al., 2003, Appl. Environ. Microbiol. 69(10): 5884-5891.

Old Rifle Site 2003

Zone of stimulated sulfate reduction. This zone increases in size as Fe(III) is depleted further downgradient.

Old Rifle Site 2003

Hypothesis: Increased acetate addition ensures net transport of acetate to downgradient areas containing Fe(III) thereby sustaining metal reduction in situ.

Approach:

- 1) Increase the in situ acetate concentration to levels greater than the ambient sulfate concentration (>10mM).
- 2) Monitor loss of soluble U(VI) and the progression of anaerobic conditions via groundwater and sediment sample analysis.
- Monitor the progression of stimulated microbial processes in the groundwater and the sediments using 16S rRNA-based and PFLA-based techniques.

Plan View of the Old Rifle Test plot: Sediment Core locations

Iron Analyses of Core Samples with Depth

 Increased Fe(II) content with depth and proximity to injection gallery

Acid Volatile Sulfur (AVS) Extraction of Sediment Cores With Depth

 Increased sulfide content with depth and proximity to injection gallery

AVS Extraction of Sediment Cores

Extractable Uranium from Sediment Cores with Depth

Bicarbonate-Extractable U(IV) and Total Uranium 0.6 (13 ft Below Land Surface) 0.5 Total U 0.4 Reduced U / 0.3 0.2 0.1 0.0 0.6 (15ft Below Land Surface) 0.5 Reduced U / Total U 0.4 0.3 0.2 0.1 0.0 0.6 (17ft Below Land Surface) 0.5 Reduced U / Total U 0.4 0.3 0.2 0.1 0.0 -10 -20 0 10 20 30

- Percentage of reduced U increases with depth and distance from acetate injection gallery.

Distance from Acetate Injection Gallery (ft)

Distance from Acetate Injection Gallery

Plan View of the Old Rifle Test plot: Groundwater Clone Libraries (16S rDNA)

Conceptual Summary of 16S rDNA Clone Library Data (2003)

- Prolonged loss of U(VI) due to extended area of stimulated metal reduction

Summary of 2003 Experiment

- 1) Acetate injection at concentrations greater than the ambient sulfate concentration extended metal-reducing conditions in the subsurface by ensuring net transport of acetate downgradient into Fe(III)-containing sediments.
- 2) Loss of U(VI) from groundwater was sustained in areas receiving acetate despite a stimulation of sulfate reduction.
- 3) Enrichment of metal-reducers in sediments associated with enrichment of bicarbonate extractable U(IV).
- 4) The composition of the microbial community in the groundwater may not reflect the sediment community composition.
- 5) Acetate addition best suited for treating source zones.
 - Stimulated loss of U from groundwater is progressively displaced from the source of acetate.

Old Rifle 2004: Lactate Addition

- Stable zone of U(VI) reduction under sulfate-reducing conditions

- Depends on the stimulation of *Desulfovibrio* or comparable species

Acknowledgements

University of Massachusetts

Helen A. Vrionis Irene Ortiz-Bernad Derek Lovley Pacific Northwest National Laboratory Philip E. Long Charles "Tom" Resch

U.S. DOE UMTRA/Grand Junction, CO Dick Dayvault Sam Marutzky Don Metzler <u>University of Tennessee</u> Aaron Peacock D.C. White

....and the citizens of Rifle, CO.