Reduction of U(VI) Complexes by Anthraquinone Disulfonate: Experiment and Molecular Modeling

C.C. Ainsworth, Z. Wang, K.M. Rosso, K. Wagnon, and J.K. Fredrickson

> Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Battelle

Rationale

Past studies demonstrate that complexation will limit abiotic and biotic U(VI) reduction rates and the overall extent of reduction. However, the underlying basis for this behavior is not understood and presently unpredictable across species and ligand structure.

- The central tenets of these investigations are:
 - Reduction of U(VI) follows the electron-transfer (ET) mechanism developed by Marcus;
 - The ET rate is the rate-limiting step in U(VI) reduction and is the step that is most affected by complexation;
 - Marcus theory can be used to unify the apparently disparate U(VI) reduction rate data and as a computational tool to construct a predictive relationship.

U.S. Department of Energy 3

AQDS Reduction Potentials

Redox Reaction	Calc. E ^o (V, SHE)	Experimental (V, SHE)
Two electron:		0.228;
$AQDS^{2-} + 2e^{-} + 2H^{+} + AH_2DS^{2-}$	0.253	0.263
$AQDS^{2-} + 2e^{-} \leftrightarrow AH_2DS^{4-}$	-0.298	-0.323
One electron:		
AQDS ²⁻ + e ⁻ + H ⁺ ↔ AHDS ^{2-•}	-0.055	-0.066
$AHDS^{2-} + e^{-} + H^{+} \leftrightarrow AH_{2}DS^{2-}$	0.561	0.522
$AQDS^{2-} + e^{-} \leftrightarrow AHDS^{3-}$	-0.244	-0.255
AHDS ³ - + e ⁻ ↔ AQDS ⁴⁻	-0.351	-0.391
AHDS ¹⁻ + e ⁻ ↔ AHDS ^{2-•}	-0.012	
AHDS ² · + e ⁻ ↔ AHDS ³⁻	-0.085	-0.048
$AH_2DS^0 + e^- \leftrightarrow AH_2DS^{1}$	0.341	
$AQDS^{1-+} + e^{} \leftrightarrow AH_2DS^{2}$	-0.002	

Rosso et al. 2004. J. Physical Chemistry A (in press)

one second

Pacific Northwest National Laboratory U.S. Department of Energy 4

Experimental Techniques

Diode Array data collection:

- λ cut off < 300 nm
- data collection 100 msec to 8 sec
- •Total time 30 sec to 3000 sec

AH_2DS Reduction of UO_2^{2+} as a Function of pH $[UO_2^{2+}] = 100 \ \mu\text{M}; [AH_2DS] = 10 \ \mu\text{M}; IS = 0.1 \ \text{M}$

 k_{obs} max attained between pH 5.5 and 6.0

• From its maximum, k_{obs} decreases by about a factor of 200

• low pH k_{obs} – Nernst pH effect which lowers the driving force.

• pH > 6 – speciation of AH_2DS and UO_2^{2+} hydrolysis

★ k_{obs} max attained between pH 5.5 and 6.0
 ★ From its maximum, k_{obs} decreases by at least 200x at pH 7.9
 ★ low pH k_{obs} – Nernst pH effect which lowers the driving force
 ★ pH > 6 – speciation of AH₂DS and UO₂²⁺ - CO₃²⁻ complexes

Pacific Northwest National Laboratory U.S. Department of Energy 7

✤ k_{obs} max attained at about pH 7.5
✤ low pH k_{obs} – Nernst pH effect and complexation

• from pH 5.5 to pH 7.5 k_{obs} increases by a factor of only 6.4

Pacific Northwest National Laboratory U.S. Department of Energy 8

AH₂DS Reduction of UO₂²⁺ - DFO complex as a Function of pH $[UO_2^{2+}] = 100 \mu$ M; $[AH_2DS] = 10 \mu$ M; $[DFO] = 150 \mu$ M

Deferriferrioxamine B (DFO)

Molecular Modeling - Marcus Theory

- Experimentally observed reactions involve 3 basic steps: o Precursor, or encounter complex, formation (K_{pre}) – (charge) o ET within the complex forming the successor complex (k^{ET}) o Dissociation of the successor complex
- The first UO₂²⁺ AH₂DS ET reaction hypothesized to be rate controlling – second ET fast - within same EC

First-order ET rate constant a function of $k^{\text{ET}} = \frac{2\pi}{h} H_{AB}^2 \frac{e^{-(\Delta G^{0'} + _)^2 / 4_RT}}{\sqrt{4\pi}RT}$ three primary variables:

Reorganization energy separable into inner- and outer-sphere terms:

 $\lambda = \lambda_{\text{IS}} + \lambda_{\text{OS}}$

Thermodynamic driving force derived from experimental ΔG° 's:

$$\Delta G^{\circ'} = \Delta G^{\circ} - W_{R} + W_{P}$$

Pacific Northwest National Laboratory U.S. Department of Energy 10

Model Results for Fe – AHA Complexes (1:1; 1:2; 1:3)

Fe³⁺(AHA)₃

r = 4.1 Å

Fe³⁺(AHA) r = 3.7 Å

 $\lambda_{IS} = 1.015 \text{ eV}$ $\lambda_{OS} = 1.979 \text{ eV}$ $\lambda_{T} = 2.994 \text{ eV}$ Fe³⁺*cis*-(AHA)₂ *r* = 3.9 Å

$$\begin{split} \lambda_{\text{IS}} &= 1.281 \text{ eV} \\ \lambda_{\text{OS}} &= 2.102 \text{ eV} \\ \lambda_{\text{T}} &= 3.383 \text{ eV} \end{split}$$

exp. t = 0.56 s calc. $t = 3 \times 10^{-5}$ s exp. t = 0.41 s calc. $\bar{t} = 0.55$ s

 $\begin{array}{l} \lambda_{\text{IS}} = 0.974 \text{ eV} \\ \lambda_{\text{OS}} = 2.207 \text{ eV} \\ \lambda_{\text{T}} = 3.181 \text{ eV} \end{array}$

exp. t = 5.52 s calc. $\bar{t} = 45.4$ s

Rosso et al. 2004. Inorg. Chem. (in press)

Pacific Northwest National Laboratory U.S. Department of Energy 11

UO₂Self-Exchange Electron Transfer

Calculated ET rate = $0.3 \text{ M}^{-1} \text{ s}^{-1}$ Experimental = $1 - 15 \text{ M}^{-1} \text{ s}^{-1}$

Ref. Howes et al. (1988)

Conditions:

aqueous solution zero ionic strength room temperature

UO ₂ ²⁺ Reduction by AH ₂ DS	Calculated log ET (M ⁻¹ s ⁻¹)
$AH_2DS + UO_2^{2+}$	4.0
AH ₂ DS + [UO ₂ (CO ₃) ₃)] ^{4–}	-6.4

Conclusions

- Under the studied pH conditions, homogeneous aqueous phase UO_2^{2+} species are reduced by AH_2DS .
 - At low pH (< 4) k_{obs} is dominated by a Nernst pH effect that decreases the driving force (ΔG°) and reduces the reaction rate
 - Reduction rate is dependent on stoichiometry, structure, and nature of the ligand.
- The observed reduction rate behavior for UO₂²⁺ complexes is semi-quantitatively consistent with expectations
- from Marcus theory.
 - Larger ligands tend to slow the rate by increasing the ET distance, decreasing the electronic coupling, and increasing the ET barrier.
 - Higher ligand numbers tend to slow the rate by creating more negatively charged complexes and lower reduction potentials.

Future Studies

Experimental:

- Variable reactant concentrations at pH = max. k_{obs}
- Investigate conformational shielding of the U(VI) cation by the polyelectrolytes (i.e., polyacrylic acid and polymaleic acid).
- Investigate UO₂²⁺ species reduction rates in the presence of hematin.

Modeling:

- Verify our hypothesis that two electrons are transferred sequentially within a single EC, and that the 1st ET is rate limiting.
- Ultimately, construct pH vs k_{obs} curves that are experimentally observed.