DAIMLERCHRYSLER

Research, Engineering and Design North America Inc.

DaimlerChrysler Fuel Cell Activities

Peter Friebe

International Low Carbon Fuel Symposium May 18, 2007 Berkeley, CA

DaimlerChrysler's Road to Sustainable Mobility

Motivation to Develop Fuel Cells and Hydrogen Technologies

- Why fuel cell technology as alternative powertrain?
 - Higher efficiency than ICE
 - Zero emission in terms of GHG and limited emissions (NO_x, ...)
 - High torque leads to better acceleration
 - Low noise (especially important in urban areas)

- Why hydrogen as an alternative fuel?
 - Diversity of feedstock, i.e. provide a secure energy supply
 - Reduction of GHG emission, i.e. increasing share of renewable energy sources

Research, Engineering and Design North America Inc.

Worldwide leading Experiences with DaimlerChrysler Fuel Cell Vehicles

60 F-Cell vehicles in customer hands

36 Buses (Citaro) Europe, Australia, China 3 Sprinter with UPS Europe, USA

787.445 mi 37.520 h

1.117.772 mi 120.147 h

39.763 mi 2.335 h

*Data April 2007

Since 2005: 100 fuel cell vehicles in daily operation. First F-Cell vehicle surpassed 100.000 km / 2000 h in January 2007.

Fuel cell drive: Sustainable mobility of the future

Next generation fuel cell drive:

■ Power: 85 kW / 350 Nm

Lithium-Ion battery

■ Range: 400 km

■ Freeze start down to - 25°C

Challenges for Fuel Cell Technology

100 Vehicles over 2 years in operation: Reliable stacks, but improvements needed in 3 areas.

Infrastructure

- Technologically mature
- Economically viable
- Available in time
- Sufficient number of stations

Cost

- Fuel Cell System & Stack
- Electric Drive
- H2-Tank
- Infrastructure

.....

Cost of H2